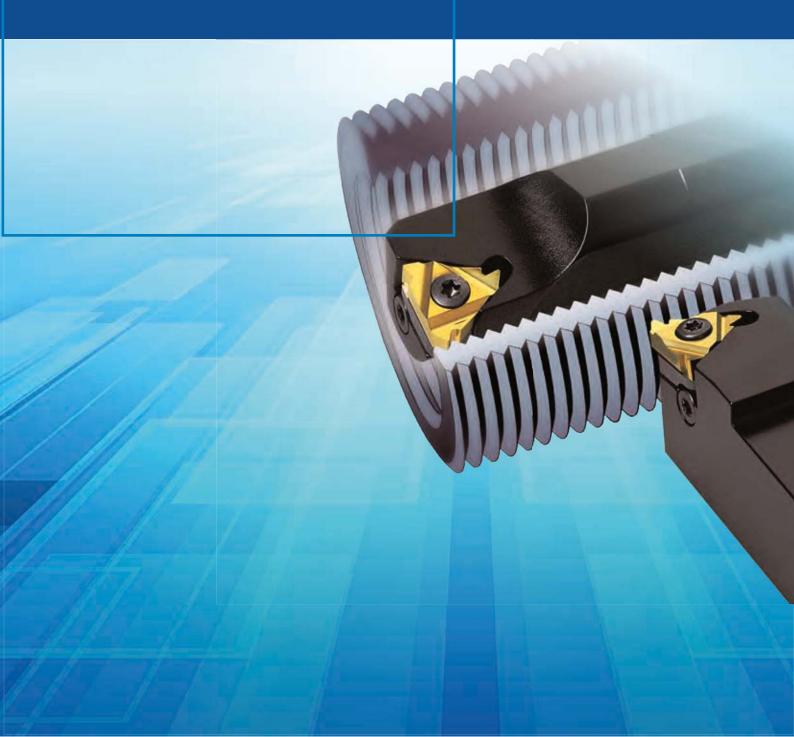


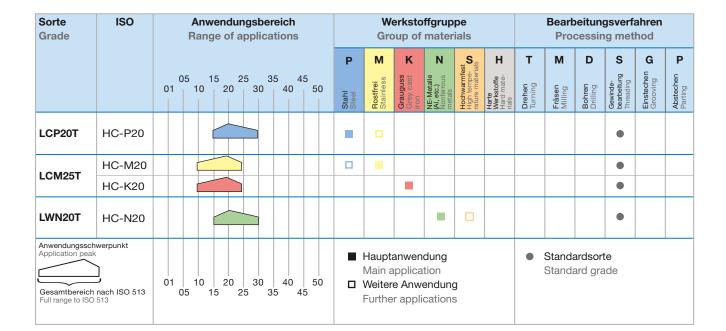
BOEHLERIT DREHEN

BOEHLERIT TURNING


2020/2021

DAS WERKZEUG HORN TOOLS

Gewindedrehen Thread turning


Technische Hinweise

Technical hints

Gewinde-Schneidstoffsorten, Übersicht Thread turning grades overview

ph HORN ph

Hauptsorten beschichtet

LCP20T (HC-P20)

Hauptsorte für die Stahlbearbeitung. Hohe Bruchfestigkeit auch bei ungünstigen Bedingungen.

Feinstkornsubstrat mit dünner TiAIN-Beschichtung.

LCM25T (HC-M20, HC-K20)

Hauptsorte für die Rostfreibearbeitung. Äußerst gut geeignet für die Bearbeitung von säurebeständigen Materialien.

LWN20T (HC-N20)

Unbeschichtete K20 Feinkornsorte für die Bearbeitung von NE-Metallen, Aluminium, Titan und hitzebeständige Legierungen.

Main grade coated

LCP20T (HC-P20)

Main grade for steel machining. High breaking strength also on bad conditions.

Micro grain substrate with thin TiAIN coating.

LCM25T (HC-M20, HC-K20)

Main grade for stainless machining.

Extremely good applicable for the machining of acid proofed materials.

LWN20T (HC-N20)

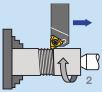
Uncoated K20 fine grain grade for the machining of non ferrous metals, aluminium, titanium and heat resistant alloys.

Technische Hinweise

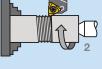
Technical hints

Arbeitsmethoden beim Gewindedrehen

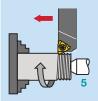
Thread turning methods


Außen Rechtsgewinde

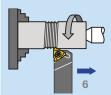
External thread right hand


Platte und Halter rechts, b: Standard

Insert and holder right hand, b: regular


Platte und Halter links, b: Umgekehrt

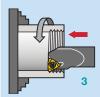
Insert and holder left hand, h. reverse


Außen Linksgewinde

External thread left hand

Platte und Halter links, b: Standard

Insert and holder left hand, b: regular



Platte und Halter rechts, b: Umgekehrt

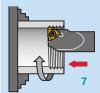
Insert and holder right hand, b: reverse

Innen Rechtsgewinde

Internal thread right hand

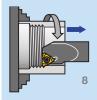
Platte und Halter rechts, b: Standard

Insert and holder right hand, b: regular



Platte und Halter links, b: Umgekehrt

Insert and holder left hand, h. reverse

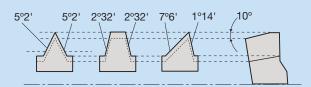

Internal thread left hand

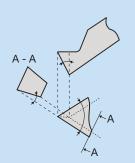
Platte und Halter links,

b: Standard

Insert and holder left hand, b: regular

Platte und Halter rechts, b: Umgekehrt


Insert and holder right hand, b: reverse


Flankenfreiwinkel α Flank clearance angle α :

Im Klemmhalter festgeschraubte Platten sind zur Erzeugung des Freiwinkels nach vorne geneigt, (10° Neigung bei Außen-Klemmhaltern, 15° Neigung bei Innen-Klemmhaltern). Da der Freiwinkel α je Flankenwinkel Φ variiert, geben wir Ihnen nebenstehend eine Formel zur Berechnung von α und auf Seite 170 einige technische Beispiele, woraus hervor geht, dass die Einstellung des korrekten Steigungswinkels (mittels Unterlegplatten) sehr wichtig ist, vor allem bei Gewinden mit kleinen Flankenwinkeln, damit die Platte auf keine der beiden Seiten drückt.

The tool holders are designed to tilt the insert when seated in the holder, (10° for external, 15° for internal tooling).

As the flank clearance angle α varies depending on the enclosed flank angle $\Phi,$ we give here a formula to calculate α and on page 170 some examples which show the importance of a correct adjustment of the helix angle by the help of anvils, especially in profiles with small enclosed flank angles to avoid rubbing of the insert cutting edge on the workpiece.

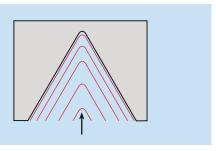
$\alpha = \arctan(\sin \alpha/2 \times \tan \delta)$

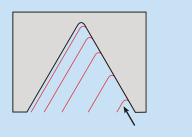
wobei:

- α = Flankenfreiwinkel Flank clearance angle
- δ = Neigungswinkel Tilt angle
- Φ = Flankenwinkel Enclosed flank angle

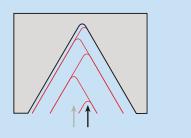
Technische Hinweise

Technical hints

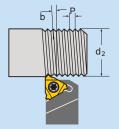

Zustellungsmethoden Infeed methods


Radial

Radial infeed


Entlang der Flanke

Flank infeed


Wechselseitige Zustellung

Alternating flank infeed method

Wahl der richtigen Unterlagsplatten

Choosing the correct anvil

Der Steigungswinkel¹⁾

Formel zur Berechnung:

$$\beta = \arctan \frac{P}{\pi \times d_2} \text{ (vereinfacht: } \beta = \frac{P}{d_2} \times 20)$$

wobei: β = Steigungswinkel [°]

P = Gewindesteigung [mm]

d₂ = Flankendurchmesser [mm]

The Helix Angle¹⁾

Formula for it's calculation:

$$\beta = \arctan \frac{P}{\pi \times d_2} \text{ (simplified: } \beta = \frac{P}{d_2} \times 20)$$

where: β = Helix angle [\circ]

P = pitch [mm] (use lead for multi-start threads)

d₂ = pitch diameter [mm]

Radial

Die radiale Zustellung ist die einfachste und gängigste Methode. Zustellung senkrecht zur Drehachse.

Spanabhebende Bearbeitung auf beiden Flanken des Profils. Die radiale Zustellung wird empfohlen:

- bei Steigung kleiner als 1,0 mm
- bei kurzspanenden Werkstoffen
- bei Werkstoffen, die zur Kaltverfestigung neigen

Radial infeed

Radial infeed is the simplest and most popular method. The feed is perpendicular to the turning axis, and both flanks on the insert perform the cutting operation.

Radial infeed is recommended:

- when the pitch is smaller than 1.0 mm
- for materials with short chips
- for materials having cold hardening tendency

Entlang der Flanke

ist zu empfehlen:

- bei Steigung größer als 1,0 mm. Bei radialer Zustellung wäre die Schneidkante zu lang, was zum Rattern führen würde.
- Bei TRAPEZ und ACME-Gewinde, weil das Spanen an drei Schneidkanten für den Spanfluß von Nachteil ist.

Flank infeed

is recommended:

- when the thread pitch is more than 1.0 mm. Using the radial method, the effective cutting edge length is too large, resulting in
- for TRAPEZOIDAL and ACME thread. The radial method result in three cutting edges, making chip flow very difficult

Wechselseitige Zustellung

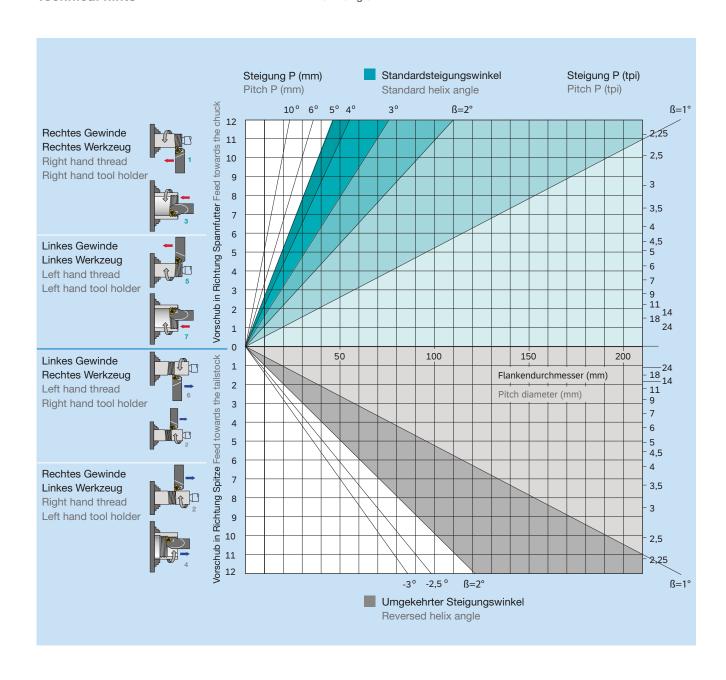
Besonders empfohlen bei sehr großen Steigungen, bzw. bei langspanenden Werkstoffen. Von Vorteil ist Aufteilung der Bearbeitungen entlang beider Flanken und der gleichmäßige Verschleiß auf beiden Schneidkanten. Wegen der aufwendigen Programmierung ist diese Zustellmethode nicht auf allen Maschinen möglich.

Alternating flank infeed method

Use of the alternate flank infeed method is recommended especially in large pitches, and for materials with long chips. This method divedes the work equally on both flanks, resulting in equal wear along the cutting edges. Alternate flank infeed requires more complicated programming and is not available on all lathes.

Die Auswahl der richtigen Unterlagsplatte erfolgt entsprechend Tabelle auf Seite 172.

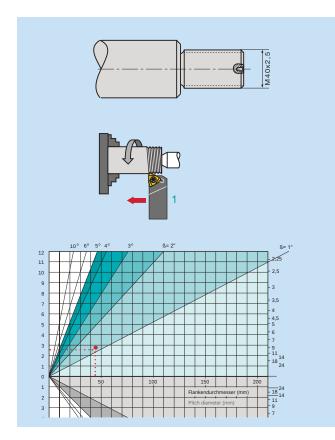
To determine the correct anvil use the table on page 172.


¹⁾ Der Steigungswinkel kann auch mit Hilfe des Diagramms auf Seite 172 ermittelt werden.

 $^{^{1)}}$ The helix angle can also be found from the graph on page 172.

Technical hints

Steigungswinkel Helix angle


Unterlagsplatten

Anvils

Steigungswinkel Helix angle		4,5	3,5	2,5	1,5	0,5	0	-0,5	-1,5			
Platte I = Halter Insert I = Holder		Bestellbezeichnung Ordering Code										
16	ER/IL	YE16-3P	YE16-2P	YE16-1P	YE16	YE16-1N	YE16-1,5N	YE16-2N	YE16-3N			
16	EL/IR	YI16-3P	YI16-2P	YI16-1P	YI16	YI16-1N	YI16-1,5N	YI16-2N	YI16-3N			
22	ER/IL	YE22-3P	YE22-2P	YE22-1P	YE22	YE22-1N	YE22-1,5N	YE22-2N	YE22-3N			
22	EL/IR	YI22-3P	YI22-2P	YI22-1P	YI22	YI22-1N	YI22-1,5N	YI22-2N	YI22-3N			

Bearbeitungsbeispiele Machining examples

Gewinde: ISO-metrisches Gewinde, M40 x 2,5 außen rechts

Werkstoff: 42CrMo4

Gewählte Arbeitsmethode: Nr. 1, Vorschub zum Spannfutter

Klemmhalter: AL25-16 Wendeplatte: 16ER2,5ISO Boehlerit Sorte: LCP20T

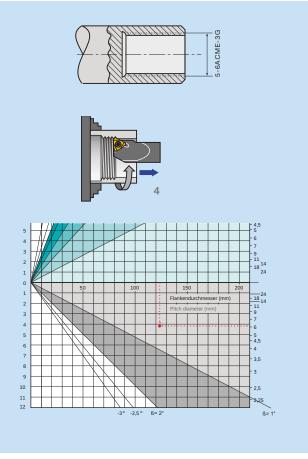
Ermittlung des Steigungswinkels und Wahl der Unterlagsplatte: Aus der Graphik Seite 172 wird ein Steigungswinkel β zwischen 1° und 2° abgelesen. Aus der Tabelle auf Seite 172 wird diesem

Steigungswinkel die Unterlagsplatte YE16 zugeordnet.

Schnittgeschwindigkeit und Anzahl der Durchgänge werden aus den Angaben der Tabellen auf den Seiten 174 -175 entnommen:

v_C: 120 m/min, Durchgänge: 10

Thread: ISO-metric M40 x 2,5 external right hand


Material: 42CrMo4

Choosen working method: No1, feed towards the chuck

Tool holder: AL25-16 Insert: 16ER2,5ISO Boehlerit grade: LCP20T

Determination of the helix angle and choice of the correct anvil: From the diagram on page 172 a helix angle β between 1° and 2° is found. To this helix angle corresponds anvil YE16 in the table on page 172. Cutting speed and number of passes are taken from

the tables on pages 174 - 175: v_C : 120 m/min, Number of passes: 10

Gewinde: ACME innen rechts Steigung: 6 tpi (Gänge pro Zoll) Bohrungsdurchm.: 5" Werkstoff: NIRO austenitisch

Gewählte Arbeitsmethode: Nr.4, Vorschub weg vom Spannfutter

(zur besseren Spanabfuhr) Klemmhalter: AVR40-22LH Wendeplatte: 22IL6ACME Boehlerit Sorte: LCM25T

Ermittlung des Steigungswinkels und Wahl der Unterlagsplatte: Aus der Graphik Seite 172 wird ein Steigungswinkel β zwischen 0° und 1° abgelesen. Aus der Tabelle auf Seite 172 wird diesem Steigungswinkel die Unterlagsplatte YE22-2N zugeordnet. Schnittgeschwindigkeit und Anzahl der Durchgänge werden aus den Angaben der Tabellen auf den Seiten 174 - 175 entnommen:

v_c: 150 m/min, Durchgänge: 18

Thread: ACME internal right hand

Pitch: 6 tpi

Diameter of hole: 5"

Material: Stainless austenitic

Choosen working method: No.4, feed off the chuck

(for better evacuation of the chips)

Tool holder: AVR40-22LH Insert: 22IL6ACME Boehlerit grade: LCM25T

Determination of the helix angle and choice of the correct anvil: From the diagram on page 172 a helix angle β between 0° and 1° is found. To this helix angle corresponds anvil YE22-2N in the table.on page 172. Cutting speed and number of passes are taken from the tables on pages 174 - 175:

v_c: 150 m/min, Number of passes: 18

Maßnahmen bei Bearbeitungsproblemen, Gewindedrehen Options against machining problems Absolute

Options against machining problems, thread turning

	Problem Problem									
	Extremer Freiflächenverschleiß Increased insert flank wear	Ungleichmäßiger Schneidkantenverschleiß Uneven cutting edge wear	Extreme plastische Verformung Extreme plastisc deformation	Plattenbruch Cutting edge breakage	Aufbauschneidenbildung Built-up edge	Zu flaches Gewindeprofil Thread profile is to shallow	Schlechte Oberflächengüte Poor surface quality			
Abhilfe		2 0, 2				141	0, =			
Option										
HM-Verschleißfestigkeit			A		A					
Carbide wear resistance	T		ı							
HM-Zähigkeit				A						
Carbide toughness				ı						
Schnittgeschwindigkeit	Т Т				♠		1			
Cutting speed	<u> </u>		V		•					
Vorschub										
Feed			¥	<u> </u>						
Zahl der Durchgänge			│	│ ↑						
Number of passes Flankenzustellung			•	•						
Flank infeed method		\leftrightarrow					\leftrightarrow			
Unterlagsplatte										
Anvil		\leftrightarrow					\leftrightarrow			
Schneidkantenhöhe						4				
Height of cutting edge						→				
Spannung										
Fixation					\rightarrow					
Rohlingsmaß										
Size of the blank						-				
Kühlung	A		A							
Cooling	•			-						
Schneidplattenwechsel						\leftrightarrow				
Change of the cutting edge						' *				

Anzahl der Durchgänge

Number of passes

gun	mm	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00	4,50	5,00	5,50	6,00	8,00
Steigt Pitch	Gänge/Zoll tpi	48	32	24	20	16	14	12	10	8	7	6	5,5	5	4,5	4	3
Anzahl Durchgänge Number of passes		4-6	4-7	4-8	5-9	6-10	7-12	7-12	8-14	9-16	10-18	11-18	11-19	12-20	12-20	12-20	15-24

Technical hints

Schnittdatenrichtwerte Gewindedrehen Cutting data standard value, thread turning

offgru Il grou	_	ff-Hauptgruppen und Kennbuchstaben groups and their characteristics letters	Härte Brinell			
Werkstoffgruppe Material group	Werkstoff Material		hardness	v _c (m/min)	LCM25T v _C (m/min)	LWN20T
>	Unlegierter Stahl ¹⁾	ca. 0,15%C geglüht annealed	HB 125	115 – 190	-	
-	Unalloyed steel ¹⁾	ca. 0,45 %C geglüht annealed	150	100 – 175		
	Chancy ou cloor		170	90 – 165		
	Niedrig legierter Stahl ¹⁾	ca. 0,75 %C vergütet heat treated geglüht annealed	180	100 – 180		
	Low-alloy steel ¹⁾	vergütet heat treated	275	75 – 140		
	Low-alloy steel	vergütet heat treated	350	70 – 135		
	Hochlegierter Stahl und	geglüht annealed	200	80 – 120		
	hochlegierter Werkzeugstahl ¹⁾	gehärtet und angelassen	325	50 - 100		
	High-alloy steel and	annealed	200	80 – 120		
	high alloy tool steel ¹⁾	hardened and temp.	325	50 - 100		
	Stahlguss ¹⁾	ferritisch/martensitisch geglüht	200	70 – 130		
	Steel cast ¹⁾	ferritic/martensitic annealed	200	70 - 130		
		martensitisch vergütet	225	60 – 120		
		martensitic hardened and temp.	225	60 - 120		
M	Nichtrostender Stahl ¹⁾	ungehärtet	200	70 – 130	70 - 150	
	ferritisch Stainless steel ¹⁾	gehärtet unhardenable	330 200	60 - 115 70 – 130	60 - 125 70 - 150	
	ferritic	hardened	300	60 - 115	60 - 125	
	Nichtrostender Stahl ¹⁾	austenitisch	180	90 - 140	90 - 160	
	austenitisch	Duplex	200	40 - 110	40 - 120	
	Stainless steel ¹⁾	austenitic	180	90 - 140	90 - 160	
	austenitic Edelstahlguss ¹⁾	Duplex ungehärtet	200 200	40 - 110 90 - 120	40 - 120 90 - 150	
	ferritisch	gehärtet	330	65 - 110	65 -120	
	Special steel cast ¹⁾	unhardenable	200	90 - 120	90 - 150	
	ferritic	hardened	330	65 - 110	65 -120	
	Edelstahlguss ¹⁾ austenitisch	austenitisch	200 330	85 - 110 60 - 100	85 - 120 60 - 110	
	Special steel cast ¹⁾	gehärtet austenitic	200	85 - 110	85 - 120	
	austenitic	hardened	330	60 - 100	60 - 110	
K	Grauguss	perlitisch/ferritisch perlitic/ferritic	180	70 - 130		
	Grey cast iron	perlitisch (martensitisch) perlitic (martensitic)	260	60 - 115		
	Gusseisen mit Kugelgraphit	ferritisch ferritic	160	125 - 160		
	Nodular graphite cast iron	perlitisch perlitic	260	90 - 120		
	Temperguss	ferritisch ferritic	130	60 - 70		
	Malleable cast iron	perlitisch perlitic	230	60 - 145		
N	Aluminium-Legierungen	gewalzt nicht aushärtbar	60	100 - 365		100 – 250
	schmiedeeisern	rolled, not hardenable				
	Aluminium alloys forge ironed					
	Aluminium-Legierungen	gegossen, nicht aushärtbar	75	200 - 400		80 – 120
	Aluminium alloys	casted, not hardenable				
	Aluminium-Legierungen	Guss Si 13-22%	130	60 - 180		50 - 120
	Aluminium alloys	cast Si 13-22%				
	Kupfer und Kupferlegierungen	Messing	90	80 - 225		70 - 170
	(Bronze/Messing)	Bronze und bleifreies Kupfer	100	80 - 255		70 - 170
	Copper and copper alloys	Brass				
	(Bronze/Brass)	Bronze, non leaded copper				
S	Warmfeste Legierungen	Fe-Basis vergütet heat treated	200	45 - 60		30 - 50
	Heat resistant alloys	Fe-based gealtert aged	280	30 - 50		25 - 40
		Ni- oder Co-Basis vergütet heat treated Ni- or Co-based gealtert aged	250	20 - 30		20 - 30
	Titoplogiousses	goditort agod	350	15 - 25		15 - 25
	Titanlegierungen	Reintitan Pure titanium	400Rm	140 - 170 50 - 70		60 - 100 40 - 60
	Titanium alloys	Alpha and Reta alleve hardened	1050Rm	50 - 70 50 - 70		40 - 60
Н	Gehärteter Stahl	Alpha- and Beta-alloys hardened gehärtet und	1050Rm 45-50HRC	45 - 60		40 - 60
-	Genarielei Glaiii	angelassen	51-55HRC	40 - 50		
	Hardened steel	hardened and	45-50HRC	45 - 60		
		tempered	51-55HRC	40 - 50		

1)und Stahlguss and cast steel