

GENERAL CATALOG 2020/21

PRECISION TOOLS
FOR SMALL PART MANUFACTURING AND MICRO-CUTTING

multidec®-DRILL contains of a wide range of high-precision solid carbide drills and centre drills. This includes the range from Ø 0.5 to 6 mm and centre drills with tip angles of 90°, 120° or 140°. multidec®-DRILL is characterised by its high stability and precision, and makes a decisive contribution to achieving high quality because of its excellent positioning capability and self-centering characteristic, and makes the work easier. The design also provides good chip removal and the tool life is increased significantly because of the HX and TX+ coatings.

Benefits:

- High degree of accuracy and stability
- Self-centering
- Excellent positioning capability
- Good chip removal
- Complete range of solid carbide twist drills from Ø 0.5-6 mm
- Centre drills with tip angle of 90°, 120° or 140°
- HX and TX+ coatings for longer tool life
- Diameter coordinated to metric thread sizes
- Intermediate sizes possible on request

375

Overview - multidec®-DRILL

enter drills									376
rills				-	=				377
		Salanger Salanger Salanger	Total contribution of the		last to dispose data between the last ingle place		-		
	San (M) Town (S) Substitute(R)	129-000		10.00	20				
	Company Company Company	. 14							
utting specification / Feeds	States States States					• •••			379

Center drilling

DRP ...

DRP 338 140 R ...

DRP 442 090 R ...

DRP 442 120 R ...

DRP 442 140 R ...

DRP 650 090 R ...

DRP 650 120 R ...

DRP 650 140 R ...

8

0

4 4

4 4

6

6

6 6

4 4

6

376

Order designation	Carbi	ide	□20	Dimens	sions								
	0	•	0										
	0	•	•										
		0	-										
_	1077.1		0	224	FI	Fl 1	1						
R	UHM 20	UHM 20 HX	UHM 20 TX+	d ₁	d ₂	J ₁	Q	α					
PREMIUM-LINE													
DRP 338 090 R				3	3	38	0.04	90°					
DRP 338 120 R				3	3	38	0.04	120°					

38

42

42

42

50

50

0.04

0.05

0.05

0.05

0.06

0.06

0.06 140°

140°

90°

120°

140°

90°

120°

-	DC	
L	PRS	

Order designation	Carbide	e 🗅 2	Dimensio	ons				Core hole drill for
	0							
	0							
	0							
		0 -						
	-	- 0						
	UHM 20	UHM 20 HX	d ₁	l ₁	d ₀	l ₀		

PREMIUM-LINE

DRS 338 050		0.5	1.5	3	38	-
DRS 338 065		0.65	2	3	38	T2
DRS 338 075		0.75	2.3	3	38	M1 [T3
DRS 338 085		0.85	2.6	3	38	M1.1
DRS 338 095		0.95	2.9	3	38	M1.2
DRS 338 100		1	3	3	38	SW1 T5
DRS 338 110		1.1	3.3	3	38	M1.4
DRS 338 120		1.2	3,6	3	38	T6
DRS 338 125		1.25	3.8	3	38	M1.6 0-80 UNF
DRS 338 145		1.45	4.4	3	38	M1.8
DRS 338 150		1.5	4.5	3	38	1-64 UNC 1-72 UNF SW1.5
DRS 338 160		1.6	4.8	3	38	M2.0
DRS 338 165		1.65	5	3	38	T8
DRS 338 175		1.75	5.3	3	38	M2.2 2-56 UNC
DRS 338 190		1.9	5.7	3	38	M2.3 2-64 UNF
DRS 338 195		1.95	5.9	3	38	T10
DRS 338 200		2	6	3	38	SW2
DRS 338 205		2.05	6.2	3	38	M2.5 3-48 UNC
DRS 338 215		2.15	6.5	3	38	3-56 UNF
DRS 338 230		2.3	6.9	3	38	4-40 UNC T15
DRS 338 240		2.4	7.2	3	38	4-48 UNF
DRS 338 250		2.5	7.5	3	38	M3 SW2.5
DRS 338 260		2.6	7.8	3	38	5-40 UNC
DRS 338 270		2.7	8.1	3	38	5-44 UNF
DRS 338 275		2.75	8.3	3	38	6-32 UNC T20
DRS 338 280		2.8	8.4	3	38	0-32 ONC 120
DRS 442 290		2.9	8.7	4	42	M3.5 6-40 UNF
DRS 442 300	 	3	9	4	42	SW3
DRS 442 315		3.15	9.5	4	42	T25
DRS 442 330		3.13	9.9	4	42	M4
DRS 442 340		3.4	10.2	4	42	8-32 UNC
DRS 442 350		3.5	10.2	4	42	8-36 UNF SW3.5
DRS 442 370		3.7	11.1	4	42	6-30 UNF (3W3.5
DRS 650 390		3.7	11.7	6	50	T30
DRS 650 400		4	12	6	50	SW4
DRS 650 410		4.1	12.3	6	50	10-32 UNF
DRS 650 410		4.1	12.3		50	M5
				6	7.7:	
DRS 650 450		4.5	13.5	6	50	740
DRS 650 470		4.7	14.1	6	50	T40
DRS 650 500		5	15	6	50	M6 SW5
DRS 650 600		6	18	6	50	M7 SW6

DRL ...

Order designation	Carb	ide	□ 20	Dimensio	ons					Core hole drill for
	0									
	0									
	0									
		0	1870							
	-	-	0							
	UHM 20	UHM 20 HX	UHM 20 TX+	d ₁	li	d ₀	l ₀			

PR	E١	ЛIL	IM	-11	VI-
Maria	_	_			

PREMIUM-LINE						
					22	
DRL 338 050		0.5	3	3	38	
DRL 338 065		0.65	3.9	3	38	T2
DRL 338 075		0.75	4.5	3	38	M1 T3
DRL 338 085		0.85	5.1	3	38	M1.1
DRL 338 095		0.95	5.7	3	38	M1.2
DRL 338 100		1	6	3	38	SW1 T5
DRL 338 110		1.1	6.6	3	38	M1.4
DRL 338 120		1.2	7.2	3	38	T6
DRL 338 125		1.25	7.5	3	38	M1.6 0-80 UNF
DRL 338 145		1.45	8.7	3	38	M1.8
DRL 338 150		1.5	9	3	38	1-64 UNC 1-72 UNF SW1.5
DRL 338 160		1.6	9.6	3	38	M2
DRL 338 165		1.65	9.9	3	38	T8
DRL 338 175		1.75	10.5	3	38	M2.2 2-056 UNC
DRL 338 190		1.9	11.4	3	38	M2.3 2-64 UNF
DRL 338 195		1.95	11.7	3	38	T10
DRL 338 200		2	12	3	38	SW2
DRL 338 205		2.05	12.3	3	38	M2.5 3-48 UNC
DRL 338 215		2.15	12.9	3	38	3-56 UNF
DRL 338 230		2.3	13.8	3	38	4-40 UNC T15
DRL 338 240		2.4	14.4	3	38	4-48 UNF
DRL 338 250		2.5	15	3	38	M3 SW2.5
DRL 338 260		2.6	15.6	3	38	5-40 UNC
DRL 338 270		2.7	16.2	3	38	5-44 UNF
DRL 338 275		2.75	16.5	3	38	6-32 UNC T20
DRL 338 280		2.8	16.8	3	38	
DRL 442 290		2.9	17.4	4	42	M3.5 6-40 UNF
DRL 442 300		3	18	4	42	SW3
DRL 442 315		3.15	18.9	4	42	T25
DRL 442 330		3.3	19.8	4	42	M4
DRL 442 340		3.4	20.4	4	42	8-32 UNC
DRL 442 350		3.5	21	4	42	8-36 UNF SW3.5
DRL 442 370		3.7	22.2	4	42	M4.5
DRL 650 390		3.9	23.4	6	50	T30
DRL 650 400		4	24	6	50	SW4
DRL 650 410		4.1	24.6	6	50	10-32 UNF
DRL 650 425		4.25	25.5	6	50	M5
DRL 650 450		4.5	27	6	50	-
DRL 650 470		4.7	28.2	6	50	T40
DRL 650 500		5	30	6	50	M6 SW5
DRL 660 600		6	36	6	60	M7 SW6

	Steel unalloye	d		Steel low alloy	/ed		Steel high allo	oyed	
Hardness value (HB)/(HRC)		125–300 HB			180-250 HB			200–350 HB	
Category		1			II			m/	
Machining method	•	**	***	•	**	***	•	**	***
Cutting speeds					v _c (m/min)				
Cutting material carbide									
UHM 20	+ :	- :	35-50		: 	35-50	-	+:	20-45
UHM 20 HX		=:	60-110	=	2 	50-90	-	- -:	50-80
UHM 20 TX+	200	=	-	=	=	72	=0	200	40-70

	Stainless steel			Stainless steel			Titanium		
Hardness value (HB)/(HRC)		180-220 HB	()		220–330 HB			7 2	
Category		٧			VI			IV	
Machining method	~	**	***	•	**	***	•	**	***
Cutting speeds					v _c (m/min)				
Cutting material carbide									
UHM 20		-	20-30	14	-	20-30	-1		10-40
UHM 20 HX	-	=:	60-70	1 	× 	60-70		- .:	20-40
UHM 20TX+	220	23	40-70		92	40-60	<u>=</u> 7	200	20-40

	Aluminum			Brass			Hard material	S	
Hardness value (HB)/(HRC)		60-130 HB			\$ 7			45-70 HRC	
Category		VII			VIII			Х	
Machining method	•	**	***	•	**	***	~	**	***
Cutting speeds					v _c (m/min)				
Cutting material carbide									
UHM 20	-	-	60-100	-	_	30-80		-	-
UHM 20 HX	7 .0	7.0	50-135	17		50-100		-	70
UHM 20 TX+		23	_	-	72	322	_2		15-40

Feeds multidec®-DRILL

DRP - DRS - DRL

	Steel unalloyed	Steel low alloyed	Steel high alloyed	Stainless steel	Titanium	Aluminum/Brass	Hard materials
D (mm)	f(mm/U)	f(mm/U)	f (mm/U)	f (mm/U)	f (mm/U)	f(mm/U)	f(mm/U)
≤1	0.03-0.07	0.03-0.07	0.03-0.07	0.03-0.07	0.03-0.07	0.03-0.08	0.03-0.07
2	0.03-0.08	0.03-0.08	0.03-0.08	0.03-0.08	0.03-0.08	0.04-0.09	0.03-0.08
3	0.04-0.10	0.04-0.10	0.04-0.10	0.04-0.10	0.04-0.10	0.05-0.11	0.04-0.10
4	0.05-0.11	0.05-0.11	0.05-0.11	0.05-0.11	0.05-0.11	0.06-0.12	0.05-0.11
5	0.06-0.12	0.06-0.12	0.06-0.12	0.06-0.12	0.06-0.12	0.07-0.14	0.06-0.12
6	0.07-0.14	0.07-0.14	0.07-0.14	0.07-0.14	0.07-0.14	0.09-0.16	0.07-0.14