

MASTER CATALOG

HAIMER®

HAIMER

24

TOOLING TECHNOLOGY METRIC / INCH

Tooling Technology Tooling Technolog

HAIMER MILL Power Series

Solid Carbide End Mills – Unique Advantages

HAIMER Quality – 100% guarantee:

→ Consistent cutting tool performance
 → Maximized process reliability

Safe-Lock shank:

- \rightarrow Maximum pull-out protection
- \rightarrow Best run-out accuracy
- \rightarrow Maximum cutting volume
- → Even in tool holders without Safe-Lock consistent clamping forces and torques
- \rightarrow h5 shank tolerance

HAIMER.

- \rightarrow Less prone to chipping
- \rightarrow Wide application range

- \rightarrow Optimized chip removal
- \rightarrow Increased tool life

HAIMER MILL Power Series

For maximum cutting performance and tool life

FORMULAS - MILLING BASICS

Common North American cutting tool formulas

Description	Formula	Legend
Cutting Speed (RPM)	$RPM = \frac{SFM \cdot 3.82}{Dia.}$	RPM = Revolutions per minute
Surface feed per minute	SFM = RPM ⋅ 0.262 ⋅ Dia.	Dia. = Tool diameter [inch] SFM = Surface feed per minute [inch/min] IPM = Food per minute [inch/min]
Feed (IPM)	IPM = RPM·IPR	IPR = Feed per revolution [inch/r] $IPT = Feed per tooth [inch/Z]$
Feed per tooth	$IPT = \frac{IPM / RPM}{No. \text{ of flutes}}$	MRR = Material removal rate [inch ³ /min] WOC = Width of cut
Material removal rate	MRR = IPM·WOC·DOC	DOC = Depth of cut

Cutting speed, Feed and Milling

Description	Formula	Legend
RPM	$n = \frac{v_c \cdot 1000}{D \cdot \pi}$	$a_e = Radial cutting width [mm]$ $a_p = Axial cutting depth [mm]$ D = Diameter [mm] $f_n = Feed per rotation [mm/r]$ $f_z = Feed per tooth [mm/Z]$ $h_m = Average chip thickness [mm]$ $k_c = Specific cutting force [N/mm2]$ l = Length of cut [mm] n = Revolutions per minute [rpm] $P_a = Drive power [kW]$ Q = Material removal rate [cm3/min] $T_c = Cutting time [min]$ $v_c = Cutting speed [m/min]$ $v_r = Feed rate [mm/min]$ z = Number of teeth $\pi = 3.14$ $n_{ee} = Efficiency rate$
Cutting speed	$v_{\rm c} = \frac{D \cdot \pi \cdot n}{1000}$	
Feed per tooth	$f_z = \frac{f_n}{z} \qquad f_z = \frac{v_f}{z \cdot n}$	
Feed per rotation	$f_n = f_z \cdot z$ $f_n = \frac{V_f}{n}$	
Feed rate	$v_f = f_z \cdot z \cdot n$	
Material removal rate	$Q = \frac{a_p \cdot a_e \cdot v_f}{1000}$	
Drive power	$P_{a} = \frac{a_{p} \cdot a_{e} \cdot v_{f} \cdot k_{c}}{60 \cdot 10^{6} \cdot \eta_{mt}}$	
Cutting time	$T_c = \frac{I}{V_f} = min$	
Average chip thickness	$h_m = f_z \cdot \sqrt{\frac{a_e}{D}}$	

29

NCH

METRIC

HAIMER.