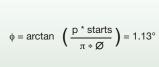


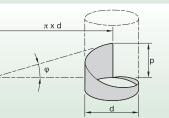
2017 Master Catalog

resultant angle		3.5°	2.5°	1.5°	0.5°	-0.5°	-1.5°	
insert size (iC)	toolholder	shim ordering code						
3/8"	ex. RH/in. LH	SM-YE3-2P	SM-YE3-1P	SM-YE3	SM-YE3-1N	SM-YE3-2N	SM-YE3-3N	
	ex. LH/in. RH	SM-YI3-2P	SM-YI3-1P	SM-YI3	SM-YI3-1N	SM-YI3-2N	SM-YI3-3N	
1/2"	ex. RH/in. LH	SM-YE4-2P	SM-YE4-1P	SM-YE4	SM-YE4-1N	SM-YE4-2N	SM-YE4-3N	
	ex. LH/in. RH	SM-YI4-2P	SM-YI4-1P	SM-YI4	SM-YI4-1N	SM-YI4-2N	SM-YI4-3N	

Slanted Shim Kit

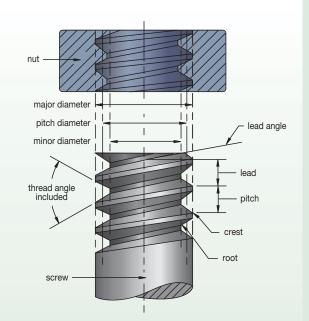
Because you might occasionally need different shims than those supplied with our standard toolholders, we strongly recommend that shim kits be readily available in every tool shop.


inse	ert size	shim size (D)	ordering code	contains slanted shims
	3x	3/8"	ABY3	SM-YE3-2P, 1P, 1N, 2N, 3N SM-YI3-2P, 1P, 1N, 2N, 3N
	4x	1/2"	ABY4	SM-YE4-2P, 1P, 1N, 2N, 3N SM-YI4-2P, 1P, 1N, 2N, 3N


The Helix Angle

Exam	
d =	1.892" (48,06mm
p =	.125" (3,175mm)

- Helix angle = = pitch
- p d pitch diameter =


φ

Screw Thread Definitions

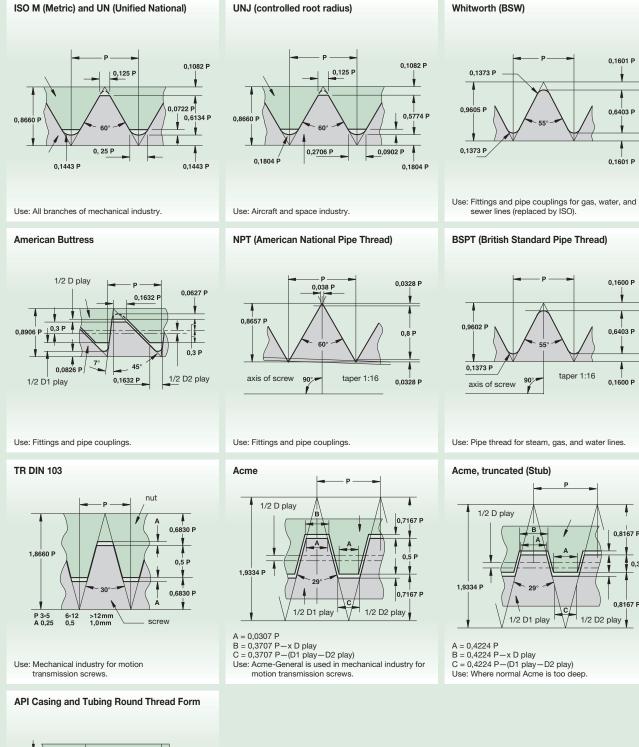
- 1. Major diameter The largest diameter of a straight screw thread. This applies to both internal and external threads.
- 2. Pitch diameter On a straight thread, it is the diameter which passes through the thread profiles at such points which make the thread width of the groove equal to one-half of the basic pitch. On a "perfect thread," this occurs at the point where the widths of the thread and groove are equal.
- 3. Thread angle (included) The included angle between the individual flanks of the thread form.
- 4. Minor diameter The smallest diameter of a straight screw thread. This applies to both internal and external threads.
- 5. Lead angle On a straight thread, the lead angle is the angle created by the helix of the thread at the pitch diameter with a plane perpendicular to the axis.
- 6. Lead The distance a screw thread advances axially in one revolution. On a single start, the pitch and lead are identical. The lead is equal to the pitch times the number of starts.
- 7. Pitch The distance from a point on a screw thread to a corresponding point on the next thread measured parallel to the thread axis.
- 8. Crest The outer most surface of the thread form which joins the flanks.
- 9. Root The inner most surface of the thread form which joins the flanks.

NOTE: Threads per inch (TPI) not shown: The number of threads per inch measured axially. The terms pitch and TPI are often used interchangeably. TPI = 1/pitch

Technical Information Common Thread Forms

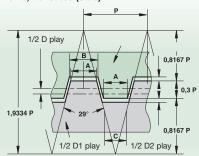
WIDIA

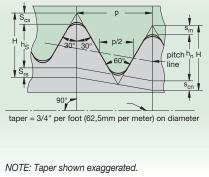
0.1601 P


0,6403 P

0.1601 P

0,1600 P


0.6403 P


0,1600 P

Use: Pipe thread for steam, gas, and water lines.

taper 1:16

Suggested Grades and Speeds for Threading Various Workpiece Materials

		reco	recommended surface speed – SFM							
workpiece group	workpiece material	uncoated	PVD o	coated						
		тнм	TN6010	TN6025						
free-machining carbon steel	10L18, 10L45, 1213, 12L13, 12L14, 1140, 1141, 11L44, 1151, 10L50	_	300–650	150–650						
plain carbon steel	10063, 1008, 1010, 1015, 1018, 1020, 1025, 1026, 1108, 1117	_	250-650	150–575						
alloy steels/tool steels 150–325 HB (up to 35 HRC)	1042, 1045, 1070, 1080, 1085, 1090, 1095, 1541, 1561, 1572,	_	250-650	125–550						
alloy steels/tool steels 330–450 HB (36–47 HRC)	5140, 8620, W1, Ó1, S1, P20, H13, D2, A6, H13, L6	_	200–525	_						
martensitic/ferritic stainless/precipitation hardening	416, 420F, 440F, 405, 409, 429, 430, 434, 436, 442, PH	_	150–525	100–400						
austenitic stainless steel	201, 202, 301, 302, 303, 304, 304, 305, 321, 347, 348, 310, 314, 316, 316L, 330	200–350	200–650	150–450						
gray cast iron 135–270 HB	class 20, 30, 35, 45	200–300	200–775	150–400						
gray cast iron 275–450 HB	class 50, 55, 60	150–250	150–575	50–250						
alloy/ductile iron	A536, J434C, 60-40-18, 80-55-06, 100-70-03	150–250	150–650	100–525						
free-machining aluminum alloys	2024-T4, 2014-T6, 6061-T6 2011-T3, 3003-H18, A2, Alcan, Alcoa 510, Duralumin	400-800	400–1200	_						
high-silicon aluminum alloys	A380, A390, A380-1, A390-1, A380-2	_	_	_						
copper/zinc/brass		250–600	250–1000	150–775						
non-metallics	Graphite, Nylon, Plastics, Rubbers, Phenolics, Carbon	400–1500	400-1300	150–1000						
high-temperature alloys 125–269 HB (up to 27 HRC)	Nickel 200, Monel, R405, Monel K500, INCONEL 600, INCONEL® 625/901x750/718, Waspaloy, Hastelloy C	80–120	80-400	40-250						
high-temperature alloys 260–450 HB (26–47 HRC)	Rene 95, Waspaloy A286, Incoloy 800, Haynes 188, Stellite F, Haynes 25	80–100	100–250	20–200						
titanium alloys	Ti-6Al-4V, Tl-5Al-2.5Sn	110–180	110–325	_						

NOTE: When workpiece hardness levels are at the top of a range, starting SFM should be at the lower end. Regularly inspect insert clamps for worn flats.

Edge preparation: Uncoated — sharp PVD coated — light hone except positive top rake, top rake-sharp

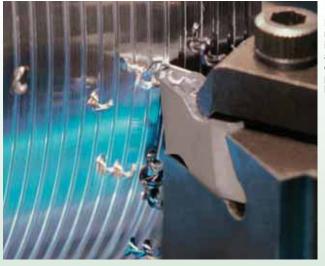
Technical Information

Failure and Solution Guide

problem	cause	possible solution
thread with torn finish	 Burs. Torn finish. Steps. Improper shim. Improper infeed. 	 Use modified flank infeed. Use full profile insert. Increase coolant concentration. Increases SFM. Check machine "Z" travel axis. Check insert form. Check for correct shim in LT system. Calculate flank clearance.
chatter	 Poor rigidity. Insert movement. Improper infeed. Off centerline. 	 Use modified flank infeed. Minimize tool overhang. Check for workpiece deflection. Check insert and clamp. Verify that tool cutting position is at workpiece centerline. Adjust number of passes. Fewer passes reduce chatter.
built-up edge	Speed too low.Insufficient coolant.Chip load.	 Increase SFM. Increase coolant concentration and/or flow. Adjust infeed angle. Increase depth of cut per pass.
deformation	Wrong grade.Speed too high.Improper infeed angle.Insufficient coolant.	 Use modified flank infeed. Use a more wear-resistant grade (e.g., TN6010[™]). Reduce SFM. Increase coolant flow.
chipping	 Improper infeed. Chip load. Wrong grade. Incorrect speed. Poor rigidity. 	 Use modified flank infeed. Increase or decrease number of passes. Eliminate spring passes. Use tougher grade (e.g., TN6025TM). Increase SFM if chipping on trailing edge. Decrease SFM if chipping on leading edge. Minimize tool overhang. Check for insert movement/check clamp. Torque screw or clamp to correct value. Check for possible part deflection. Calculate flank clearance. Ensure correct shim.
broken nose	 Heavy chip load. Small nose radius. Wrong grade. Improper infeed. 	 Use modified flank infeed. Decrease chip load. Use large nose radius if possible. Use tougher grade (e.g., TN6025).
flank wear	 Improper shim. Wrong grade. Insufficient coolant. Off centerline. Insufficient flank clearance. Improper infeed angle. 	 Ensure correct shim. Use a more wear-resistant grade (e.g., TN6025). Increase coolant flow. Check the centerline height of the tool. (The smaller the diameter, the more critical the need for centerline accuracy.) Calculate flank clearance and change shim to increase clearance on worn flank. If wear is on trailing flank, increase infeed angle clearance.

Technical Information Failure and Solution Guide

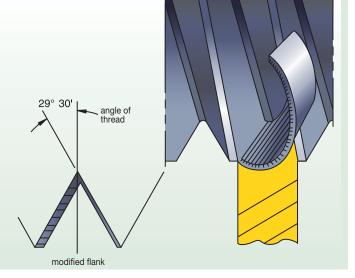
								poss	ible sol	ution								
problem	increase SFM	reduce SFM	increase chip load	decrease chip load where failure occurs	use tougher carbide grade	use harder carbide grade	apply coolant	use coated carbide	use topping insert	change infeed angle	check for insert movement and reseat	reduce tool overhang	reselect shim	apply chipbreaker style	reduce DOC	adjust center height	begin cutting threads .472" before workpiece	change infeed method
chatter	•			•							•	•				•		•
bur on crest	•								•									•
short tool life		•	•	•		•		•										•
chipped leading edge			•	•	•													
chipped trailing edge					•					•								
broken nose (first pass)	•														•	•		
broken nose (after first pass)				•	•					•			•					•
built-up on cutting edge	•		•				•	•										•
premature topping													•					
splitting threads																	•	
poor chip evacuation														•				•



WIDIA[™] insert technology brings chip control to your threading operations with the TopThread[™] platform. The proprietary WIDIA recessed chip groove, when used according to our recommendations, controls the chip in most applications. Our positive rake design lowers cutting pressures, which in turn lowers damaging heat generation thus providing better tool life. Long, stringy chips no longer mar the workpiece surface finish. The danger to operators when removing long chips from the workpiece and chuck is eliminated. All of these benefits combine to improve the productivity of your threading operations.

The Last Pass

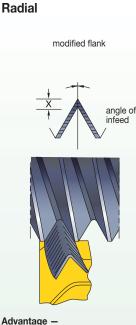
Some CNC controls require the last pass to be at a 0° infeed angle because the chip will not break on the last pass. On most carbon and alloy steels, the last pass can remain at .005" (0,127mm) depth of cut and produce an acceptable finish. For some materials, a .001" (0,025mm) to .003" (0,076mm) (spring) pass may be used to improve surface finish, however, chipbreaking action may be compromised.

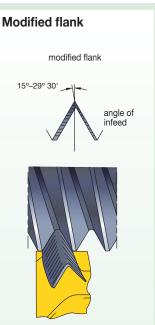


Machine Programming

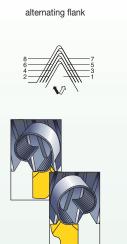
Modern CNC controls allow the programmer to easily adjust infeed angle, the number of passes, and depth of cut for each pass. The chip control threading insert performs best at an infeed angle of 29° 30', although 15° to 30° is acceptable. Also, it is important to maintain a minimum of .005" (0,127mm) depth of cut on every pass. In most applications, use of CNC canned cycles produce only marginally successful results. Custom written programs are better and are recommended.

Infeed Angle


In order to effectively and consistently break the chip, it is important to use an infeed angle between 28° and 29° 30'. Do not apply chip control inserts at infeed angles less than 15° .

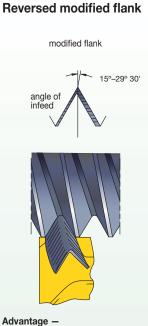


Technical Information General Machining Guidelines



- Cutting on both sides of the thread form places all of the cutting edge in the cut and protects edge from chipping.
- · Even wear on the insert.

Advantage -


- Tool cuts both sides of thread form, so it is protected from chipping similar to 0° infeed. Channel-type chip develops, but uneven chip thickness helps remove the chip similar to flank infeed.
- This is the preferred method, especially when used with a chip control insert.
- Combined radial and/or alternating flank infeed.
- Results in good tool life, with wear evenly distributed over both flanks.

Alternating flank

Advantage -

- Increased tool life because both edges are used equally.
- NOTE: Some machine tools may require special programming techniques to achieve this method of infeed.

- Tool cuts both sides of thread form, so it is protected from chipping similar to 0° infeed. Channel-type chip develops, but uneven chip thickness helps remove the chip
- similar to flank infeed. • This is the preferred method, especially when used with a chip control insert.
- Combined radial and/or alternating flank infeed.
- · Results in good tool life, with wear evenly distributed over both flanks.
- As chip flow is the reversed feed direction, it is an excellent choice for internal threading.

Disadvantage -

- Tool develops a channel chip that may be difficult to handle.
- · Tip chipping occurs when cutting high-tensile materials.
- Bur condition is increased. · Entire cutting edge is engaged at finish of thread, causing increased tendency to chatter.

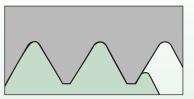
Disadvantage -

• Similar disadvantages as with 0° infeed, although reduced somewhat in magnitude as cutting forces are better equalized and chip flow is much less of a problem.

Disadvantage -

• Difficult to cut on conventional machinery.

Disadvantage -


• Programming needs to be done line by line.

Partial Profile Full Profile Multi-Tooth Profile Tooth profile with full profile shape including tooth height: Tooth profile with universal Multi-tooth full profile profile shape: generally with 2-3 teeth: • Reduced inventory.

- For various pitches in a limited range.
- Major/minor diameters must be
- accurately pre-turned.
- For bur-free, precise threads in the specified pitch.
- · General application.
- · Machining allowance for outside/core diameter around .004-.006".

- Highly productive threading with fewer passes and longer tool life.
- · Requires a rigid setup and long thread pass through.

Formulas

Inch Formula								
to find	given	formula						
SFM	D (inch) RPM	π x D SFM = x RPM						
	RPM	12"						
RPM	D (inch) SFM	SFM x 12" RPM =						
	SFM ²	$RPM = {D x \pi}$						
	Metric Formula							
to find	given	formula						
m/min	D (mm)	π x D m/min =						
	RPM	1000						
RPM	D (mm)	m/min x 1000 RPM =						
I TENI	m/min	$RPM = \frac{D x \pi}{D x \pi}$						

Legend

IPM

π

- inch per minute =
- SFM surface feet per minute =
- m/min = meters per minute
- RPM = revolutions per minute
- = part diameter D
 - = 3.1416

Maximum Cutting Speeds

On older machines cutting speed is often limited by the maximum travel speed (IPM or mm/min) of the tool allowed by the machine. Check your maximum speed with the following formulas:

inch formula: maximum cutting speed (SFM) =

part diameter (inch) x 3.14 x TPI x max IPM 12"

metric formula: maximum cutting speed (m/min) = part diameter (mm) x 3.14 x (1/pitch) x max mm/min 1000mm

Flank clearance

γ

γ β

α

- $\arctan(\sin(\beta/2) * \tan(\alpha))$ =
- side (flank) clearance =
- = included angle of thread form

= radial inclination angle

Thursd	Angela	Enternal	Internal		
Thread	Angle	External	Internal		
UN & ISO	60	5.3	8		
BSW	55	4.8	7.3		
TR	30	2.6	4		
ACME	29	2.6	3.9		
AMBUT	7	.6	.9		
AMBUT	45	4	6		

Recommendation for Threading Infeed Passes

TPI	48–32	28–24	20–16	14–12	11.5–9	8–6	5–4	3–2	
metric pitch (mm)	0,50–0,75	0,80–1	1,25–1,5	1,75–2	2,5–3	3,5–4	4,5–6	8	
Thread Type recommended number of passes									
Common V-thread forms ISO, UN, UNJ, NPT, Whitworth, BSPT, API Rotary Shoulder	4–5	5–6	6–8	8–10	9–12	12–15	14–16	15–25	
Acme, Trapez, Round, API Round	-	-	5–6	7–8	10–11	12–13	13–15	18–20	
Stub Acme, API Buttress	_	_	5	5–6	7–8	8–10	10–12	14–16	
American Buttress	_	_	7–8	9–10	11–12	13–15	17–19	22–24	

Maintain minimum .002" (0,05mm) infeed on last passes to avoid work hardening and excessive abrasion of the threading tool.

Constant Volume Infeed Values for Threading Operations

In most applications, use of CNC canned cycles produces only marginally successful results. For example, an 8-pitch external thread has a depth of .0789" (2mm).

$$\Delta ap_{X} = \frac{ap}{\sqrt{nap-1}} * \sqrt{\phi}$$

Formula for constant chip load infeed

- $\Delta ap = radial infeed$
- x = actual pass (from 1 to the nap)
- nap = number of passes

Using Radial Infeed

Bending stress on the cutting edge caused by V-shaped chips from long-chippping steel workpiece materials.

High cutting forces with small cutting thicknesses require sharp edges with high strength.

Using Flank Infeed

Lower bending stress and stabilized cutting edges produce more favorable chip shapes and larger cutting thicknesses.

Carbides with high hardness, good wear resistance, and temperature stability are advantageous.

Guidelines for Infeeds – How to Determine the Number and the Size of Passes

The number of passes "s" per thread is decisive for successful threading and crest turning. The following tables give standard values for the application condition when machining steel. The proper number of passes must be determined empirically.

If insert breakage occurs, the number of passes must be increased. With increased wear, we recommend decreasing the number of passes. The chip thickness should not be less than .0019" (0,05mm). The allowance at the diameter should not exceed .0078" (0,2mm).

Metric ISO, External Thread Cutting

thread pitch P (mm)	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00	4,50	5,00
T Ap (in)	.012	.018	.024	.030	.036	.042	.048	.060	.072	.085	.097	.109	.121
N Ар	4	4	5	6	6	8	8	10	12	14	15	15	16
			1		1	values f	or flank infe	ed (X/Z)					1
order of passes	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0.0038	0.0057	0.0066	0.0073	0.0088	0.0087	0.0099	0.0110	0.0119	0.0129	0.0142	0.0160	0.0171
2	0.0031	0.0047	0.0054	0.0061	0.0073	0.0072	0.0082	0.0090	0.0098	0.0107	0.0117	0.0132	0.0141
3	0.0029	0.0043	0.0050	0.0056	0.0067	0.0066	0.0075	0.0083	0.0090	0.0098	0.0107	0.0121	0.0129
4	0.0022	0.0033	0.0038	0.0043	0.0051	0.0050	0.0058	0.0064	0.0069	0.0075	0.0082	0.0093	0.0099
5			0.0032	0.0036	0.0043	0.0043	0.0049	0.0054	0.0058	0.0063	0.0069	0.0078	0.0084
6				0.0032	0.0038	0.0037	0.0043	0.0047	0.0051	0.0056	0.0061	0.0069	0.0074
7						0.0034	0.0039	0.0043	0.0046	0.0050	0.0055	0.0062	0.006
8						0.0031	0.0036	0.0039	0.0043	0.0046	0.0051	0.0057	0.006
9								0.0037	0.0040	0.0043	0.0047	0.0053	0.005
10								0.0034	0.0037	0.0040	0.0044	0.0050	0.0054
11									0.0035	0.0038	0.0042	0.0047	0.005
12									0.0034	0.0036	0.0040	0.0045	0.0048
13										0.0035	0.0038	0.0043	0.0046
14										0.0033	0.0037	0.0041	0.004
15											0.0035	0.0040	0.0043
16													0.004
T Ap (in)	0.012	0.018	0.024	0.030	0.036	0.042	0.048	0.060	0.072	0.085	0.097	0.109	0.121

NOTE: Always allow .003–.005" extra stock for full profile inserts.

Metric ISO, Internal Thread Cutting

thread pitch P (mm)	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.50	3.00	3.50	4.00	4.50	5.00
Т Ар	0.011	0.016	0.021	0.027	0.032	0.037	0.043	0.053	0.064	0.075	0.085	0.096	0.107
N Ap	4	4	5	6	6	8	8	10	11	12	14	15	16
	values for flank infeed (X/Z)												
order of passes	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0.0035	0.0051	0.0058	0.0066	0.0078	0.0077	0.0089	0.0097	0.0111	0.0124	0.0129	0.0141	0.0151
2	0.0029	0.0042	0.0047	0.0055	0.0065	0.0063	0.0074	0.0080	0.0092	0.0102	0.0107	0.0116	0.0125
3	0.0026	0.0038	0.0043	0.0050	0.0059	0.0058	0.0067	0.0073	0.0084	0.0094	0.0098	0.0106	0.0114
4	0.0020	0.0029	0.0033	0.0038	0.0045	0.0044	0.0052	0.0056	0.0064	0.0072	0.0075	0.0082	0.0088
5			0.0028	0.0032	0.0038	0.0037	0.0044	0.0047	0.0054	0.0061	0.0063	0.0069	0.0074
6				0.0029	0.0034	0.0033	0.0038	0.0042	0.0048	0.0053	0.0056	0.0061	0.0065
7						0.0030	0.0035	0.0038	0.0043	0.0048	0.0050	0.0055	0.0059
8						0.0027	0.0032	0.0035	0.0040	0.0044	0.0046	0.0050	0.0054
9								0.0032	0.0037	0.0041	0.0043	0.0047	0.0050
10								0.0030	0.0035	0.0039	0.0040	0.0044	0.0047
11									0.0033	0.0037	0.0038	0.0042	0.0045
12										0.0035	0.0036	0.0040	0.0043
13											0.0035	0.0038	0.0041
14											0.0033	0.0036	0.0039
15												0.0035	0.0038
16													0.0036
Т Ар	0.011	0.016	0.021	0.027	0.032	0.037	0.043	0.053	0.064	0.075	0.085	0.096	0.107

NOTE: Always allow .003–.005" extra stock for full profile inserts.

UN Thread, External	Thread Cutting
---------------------	----------------

TPI	24	20	18	16	14	12	11	10	9	8	7	6	5
T Ap (in)	0.026	0.031	0.034	0.038	0.036	0.042	0.048	0.060	0.072	0.085	0.097	0.109	0.121
N Ар	5	6	6	7	9	9	10	11	12	13	14	15	16
						values f	or flank infe	ed (X/Z)					
order of passes	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0.0071	0.0076	0.0083	0.0085	0.0070	0.0081	0.0088	0.0104	0.0119	0.0134	0.0147	0.0160	0.017
2	0.0059	0.0063	0.0069	0.0070	0.0058	0.0067	0.0072	0.0086	0.0098	0.0111	0.0122	0.0132	0.014
3	0.0054	0.0057	0.0063	0.0064	0.0053	0.0062	0.0066	0.0079	0.0090	0.0102	0.0111	0.0121	0.012
4	0.0041	0.0044	0.0048	0.0049	0.0040	0.0047	0.0051	0.0060	0.0069	0.0078	0.0086	0.0093	0.00
5	0.0035	0.0037	0.0041	0.0042	0.0034	0.0040	0.0043	0.0051	0.0058	0.0066	0.0072	0.0078	0.00
6		0.0033	0.0036	0.0037	0.0030	0.0035	0.0038	0.0045	0.0051	0.0058	0.0064	0.0069	0.00
7				0.0033	0.0027	0.0032	0.0034	0.0040	0.0046	0.0052	0.0057	0.0062	0.00
8					0.0025	0.0029	0.0031	0.0037	0.0043	0.0048	0.0053	0.0057	0.006
9					0.0023	0.0027	0.0029	0.0035	0.0040	0.0045	0.0049	0.0053	0.005
10							0.0027	0.0033	0.0037	0.0042	0.0046	0.0050	0.00
11								0.0031	0.0035	0.0040	0.0044	0.0047	0.00
12									0.0034	0.0038	0.0042	0.0045	0.004
13										0.0036	0.0040	0.0043	0.004
14											0.0038	0.0041	0.004
15												0.0040	0.004
16													0.004
T Ap (in)	0.026	0.031	0.034	0.038	0.036	0.042	0.048	0.060	0.072	0.085	0.097	0.109	0.12

UN Thread, Internal Thread Cutting

TPI	24	20	18	16	14	12	11	10	9	8	7	6	5
Т Ар	.023	.027	.030	.034	.039	.045	.049	.054	.060	.068	.077	.090	.108
N Ар	5	6	6	7	8	9	9	10	11	12	13	14	15
						values f	or flank infe	ed (X/Z)					
order of passes	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0.0063	0.0066	0.0073	0.0076	0.0081	0.0087	0.0095	0.0099	0.0104	0.0112	0.0122	0.0137	0.0158
2	0.0052	0.0055	0.0061	0.0063	0.0067	0.0072	0.0078	0.0081	0.0086	0.0093	0.0101	0.0113	0.0131
3	0.0048	0.0050	0.0056	0.0057	0.0061	0.0066	0.0072	0.0075	0.0079	0.0085	0.0092	0.0103	0.0120
4	0.0037	0.0038	0.0043	0.0044	0.0047	0.0051	0.0055	0.0057	0.0060	0.0065	0.0071	0.0079	0.0092
5	0.0031	0.0032	0.0036	0.0037	0.0039	0.0043	0.0046	0.0048	0.0051	0.0055	0.0060	0.0067	0.0077
6		0.0029	0.0032	0.0033	0.0035	0.0038	0.0041	0.0042	0.0045	0.0048	0.0052	0.0059	0.0068
7				0.0030	0.0031	0.0034	0.0037	0.0038	0.0040	0.0044	0.0047	0.0053	0.0062
8					0.0029	0.0031	0.0034	0.0035	0.0037	0.0040	0.0044	0.0049	0.0057
9						0.0029	0.0032	0.0033	0.0035	0.0037	0.0041	0.0046	0.0053
10								0.0031	0.0033	0.0035	0.0038	0.0043	0.0050
11									0.0031	0.0033	0.0036	0.0041	0.0047
12										0.0032	0.0034	0.0039	0.0045
13											0.0033	0.0037	0.0043
14											0.0031	0.0035	0.0041
15													0.0039
16													
Т Ар	0.023	0.027	0.030	0.034	0.039	0.045	0.049	0.054	0.060	0.068	0.080	0.090	0.108

NOTE: Always allow .003–.005" extra stock for full profile inserts.

NPT Thread, External, and Internal Machining

BSPT Thread, External, and Internal Machining

TPI	27	18	14	11.5	8
Т Ар	0.030	0.044	0.056	0.068	0.098
N Ap	6	8	10	12	14
		values	for flank infe	ed (X/Z)	
order of passes	X/Z	X/Z	X/Z	X/Z	X/Z
1	0.0073	0.0091	0.0102	0.0112	0.0149
2	0.0061	0.0075	0.0084	0.0093	0.0123
3	0.0056	0.0069	0.0077	0.0085	0.0113
4	0.0043	0.0053	0.0059	0.0065	0.0086
5	0.0036	0.0045	0.0050	0.0055	0.0073
6	0.0032	0.0039	0.0044	0.0048	0.0064
7		0.0035	0.0040	0.0044	0.0058
8		0.0033	0.0037	0.0040	0.0053
9			0.0034	0.0037	0.0050
10			0.0032	0.0035	0.0047
11				0.0033	0.0044
12				0.0032	0.0042
13					0.0040
14					0.0038
15					
16					
Т Ар	0.030	0.044	0.056	0.068	0.098

TPI	28	19	14	11
Т Ар	0.023	0.034	0.046	0.057
N Ap	5	8	10	12
		values for flar	nk infeed (X/Z)	
order of passes	X/Z	X/Z	X/Z	X/Z
1	0.0063	0.0070	0.0084	0.0094
2	0.0052	0.0058	0.0069	0.0078
3	0.0048	0.0053	0.0064	0.0071
4	0.0037	0.0041	0.0049	0.0055
5	0.0031	0.0034	0.0041	0.0046
6		0.0030	0.0036	0.0041
7		0.0027	0.0033	0.0037
8		0.0025	0.0030	0.0034
9			0.0028	0.0031
10			0.0026	0.0029
11				0.0028
12				0.0027
13				
14				
15				
16				
Т Ар	0.023	0.034	0.046	0.057

NOTE: Always allow .003–.005" extra stock for full profile inserts.

Trapezoid Thread to DIN 103, External, and Internal Machining

Round Thread to DIN 405, External, and Internal Machining

10

0.052

8

X/Z

0.0108

0.0089

0.0081

0.0062

0.0053

0.0046

0.0042

0.0039

0.052

8

0.064

10

values for flank infeed (X/Z)

X/Z

0.0117

0.0096

0.0088

0.0068

0.0057

0.0050

0.0046

0.0042

0.0039

0.0037

0.064

pitch

Т Ар

N Ар

order

of passes 1

2

3

4

5

6

7 8

9

10 11

12

13 14

External, a	External, and internal Machining							
pitch	1.50	2.00	3.00	4.00	5.00			
Т Ар	0.040	0.049	0.069	0.089	0.108			
N Ap	6	8	10	12	14			
		values	for flank infe	ed (X/Z)				
order of passes	X/Z	X/Z	X/Z	X/Z	X/Z			
1	0.0098	0.0101	0.0126	0.0147	0.0164			
2	0.0081	0.0084	0.0104	0.0121	0.0135			
3	0.0074	0.0077	0.0095	0.0111	0.0124			
4	0.0057	0.0059	0.0073	0.0085	0.0095			
5	0.0048	0.0050	0.0062	0.0072	0.0080			
6	0.0042	0.0044	0.0054	0.0063	0.0071			
7		0.0040	0.0049	0.0057	0.0064			
8		0.0036	0.0045	0.0053	0.0059			
9			0.0042	0.0049	0.0055			
10			0.0039	0.0046	0.0051			
11				0.0044	0.0049			
12				0.0041	0.0046			
13					0.0044			
14					0.0042			
15								
16								
Т Ар	0.040	0.049	0.069	0.089	0.108			
		005"						

15 16 Т Ар NOTE: Always allow .003–.005" extra stock for full profile inserts.

NOTE: Always allow .003–.005" extra stock for full profile inserts.

6

0.085

12

X/Z

0.0140

0.0116

0.0106

0.0081

0.0069

0.0061

0.0055

0.0050

0.0047 0.0044

0.0042

0.0040

0.085

Whitworth, External, and Internal Thread Cutting

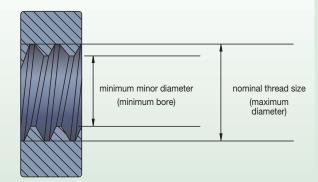
TPI282019161412111098765TAp0.0330.0320.0340.0400.0530.0580.0640.0710.0800.0910.1070.128NAp5668899101112141516ControlControlControlSSS99101112141516OrderSSKZ <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																
N Ap 5 6 6 8 8 9 9 10 11 12 14 15 16 order of passes X/Z X/Z<	TPI	28	20	19	16	14	12	11	10	9	8	7	6	5		
Normal Normal<	Т Ар	0.023	0.032	0.032	0.034	0.040	0.053	0.058	0.064	0.071	0.080	0.091	0.107	0.128		
order of passes X/Z	N Ap	5	6	6	8	8	9	9	10	11	12	14	15	16		
of passes X/2 X/2 <th 2<="" th=""> X/2 <th 2<="" th=""> <tr< th=""><th></th><th></th><th>-</th><th></th><th></th><th></th><th>values f</th><th>or flank infe</th><th>ed (X/Z)</th><th>-</th><th></th><th></th><th></th><th></th></tr<></th></th>	X/2 <th 2<="" th=""> <tr< th=""><th></th><th></th><th>-</th><th></th><th></th><th></th><th>values f</th><th>or flank infe</th><th>ed (X/Z)</th><th>-</th><th></th><th></th><th></th><th></th></tr<></th>	<tr< th=""><th></th><th></th><th>-</th><th></th><th></th><th></th><th>values f</th><th>or flank infe</th><th>ed (X/Z)</th><th>-</th><th></th><th></th><th></th><th></th></tr<>			-				values f	or flank infe	ed (X/Z)	-				
2 0.0052 0.0065 0.0065 0.0058 0.0068 0.0093 0.0093 0.0102 0.0109 0.0114 0.0129 0.0149 3 0.0048 0.0059 0.0059 0.0053 0.0063 0.0078 0.0085 0.0088 0.0093 0.0100 0.0114 0.0129 0.0141 4 0.0037 0.0045 0.0045 0.0041 0.0048 0.0060 0.0055 0.0068 0.0071 0.0077 0.0080 0.0091 0.0155 5 0.0031 0.0038 0.0038 0.0034 0.0031 0.0044 0.0050 0.0055 0.0057 0.0060 0.0065 0.0068 0.0077 0.0088 0.0077 0.0088 6 0.0034 0.0032 0.0032 0.0044 0.0044 0.0046 0.0048 0.0057 0.0060 0.0057 0.0060 0.0057 0.0060 0.0057 0.0060 0.0057 0.0060 0.0057 0.0060 0.0057 0.0064 0.0051 0.0056 0.00		X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z		
3 0.0048 0.0059 0.0059 0.0053 0.0063 0.0078 0.0085 0.0093 0.0093 0.0105 0.0118 0.0137 4 0.0037 0.0045 0.0045 0.0041 0.0048 0.0060 0.0065 0.0068 0.0071 0.0077 0.0080 0.0091 0.0105 5 0.0031 0.0038 0.0038 0.0034 0.0041 0.0050 0.0055 0.0057 0.0060 0.0065 0.0065 0.0065 0.0065 0.0065 0.0067 0.0080 0.0077 0.0080 0.0077 0.0080 0.0078 0.0089 6 0.0034 0.0034 0.0030 0.0036 0.0044 0.0048 0.0053 0.0057 0.0060 0.0068 0.0077 0.0088 0.0077 0.0080 0.0078 6 0.0034 0.0027 0.0032 0.0040 0.0042 0.0044 0.0047 0.0050 0.0052 0.0060 9 1 1 0.0025 0.0030	1	0.0063	0.0078	0.0078	0.0070	0.0083	0.0103	0.0112	0.0117	0.0123	0.0132	0.0138	0.0157	0.0181		
4 0.0037 0.0045 0.0045 0.0041 0.0048 0.0060 0.0065 0.0068 0.0071 0.0080 0.0091 0.0105 5 0.0031 0.0038 0.0038 0.0034 0.0034 0.0041 0.0050 0.0055 0.0057 0.0060 0.0055 0.0065 0.0060 0.0065 0.0068 0.0077 0.0081 0.0077 0.0081 0.0077 0.0081 0.0077 0.0081 0.0077 0.0081 0.0077 <t< th=""><th>2</th><th>0.0052</th><th>0.0065</th><th>0.0065</th><th>0.0058</th><th>0.0068</th><th>0.0085</th><th>0.0093</th><th>0.0096</th><th>0.0102</th><th>0.0109</th><th>0.0114</th><th>0.0129</th><th>0.0149</th></t<>	2	0.0052	0.0065	0.0065	0.0058	0.0068	0.0085	0.0093	0.0096	0.0102	0.0109	0.0114	0.0129	0.0149		
5 0.0031 0.0038 0.0038 0.0034 0.0041 0.0050 0.0055 0.0057 0.0060 0.0065 0.0068 0.0077 0.0089 6 0.0034 0.0034 0.0034 0.0030 0.0036 0.0044 0.0048 0.0055 0.0055 0.0053 0.0057 0.0068 0.0077 0.0089 7 0.0027 0.0032 0.0040 0.0044 0.0048 0.0048 0.0051 0.0051 0.0060 0.0068 0.0071 8 0.0025 0.0030 0.0037 0.0040 0.0044 0.0044 0.0047 0.0050 0.0051 0.0051 0.0051 0.0051 0.0051 0.0071 8 0.0025 0.0030 0.0037 0.0040 0.0044 0.0041 0.0041 0.0052 0.0066 9 0.0037 0.0037 0.0037 0.0041 0.0043 0.0049 0.0057 </th <th>3</th> <th>0.0048</th> <th>0.0059</th> <th>0.0059</th> <th>0.0053</th> <th>0.0063</th> <th>0.0078</th> <th>0.0085</th> <th>0.0088</th> <th>0.0093</th> <th>0.0100</th> <th>0.0105</th> <th>0.0118</th> <th>0.0137</th>	3	0.0048	0.0059	0.0059	0.0053	0.0063	0.0078	0.0085	0.0088	0.0093	0.0100	0.0105	0.0118	0.0137		
6 0.0034 0.0034 0.0030 0.0036 0.0044 0.0048 0.0053 0.0057 0.0060 0.0068 0.0078 7 1 1 0.0027 0.0032 0.0040 0.0044 0.0046 0.0048 0.0051 0.0051 0.0054 0.0060 0.0071 8 1 0.0025 0.0030 0.0037 0.0040 0.0042 0.0044 0.0047 0.0050 0.0051 <th< th=""><th>4</th><th>0.0037</th><th>0.0045</th><th>0.0045</th><th>0.0041</th><th>0.0048</th><th>0.0060</th><th>0.0065</th><th>0.0068</th><th>0.0071</th><th>0.0077</th><th>0.0080</th><th>0.0091</th><th>0.0105</th></th<>	4	0.0037	0.0045	0.0045	0.0041	0.0048	0.0060	0.0065	0.0068	0.0071	0.0077	0.0080	0.0091	0.0105		
7 0.0027 0.0032 0.0040 0.0044 0.0048 0.0048 0.0051 0.0054 0.0061 0.0071 8 0.0025 0.0030 0.0037 0.0040 0.0042 0.0044 0.0047 0.0050 0.0056 0.0056 9 0 0 0.0025 0.0030 0.0037 0.0037 0.0039 0.0041 0.0044 0.0046 0.0050 0.0056 0.0056 0.0056 9 0 0 0.0025 0.0034 0.0037 0.0039 0.0041 0.0044 0.0046 0.0052 0.0066 10 0 0 0 0.0037 0.0037 0.0039 0.0041 0.0043 0.0049 0.0057 11 0 0 0 0 0 0 0 0 0.0037 0.0039 0.0041 0.0046 0.0054 0.0057 12 0 0 0 0 0 0 0 0.0037 0.0037 0.0039	5	0.0031	0.0038	0.0038	0.0034	0.0041	0.0050	0.0055	0.0057	0.0060	0.0065	0.0068	0.0077	0.0089		
8 0.0025 0.0030 0.0037 0.0040 0.0042 0.0044 0.0047 0.0050 0.0056 0.0056 9 1 1 1 1 1 0.001 0.0037 0.0037 0.0037 0.0039 0.0041 0.0044 0.0046 0.0052 0.0060 10 1 1 1 1 1 1 1 0.001 1 0.0037 0.0037 0.0037 0.0039 0.0041 0.0043 0.0043 0.0057 11 1 1 1 1 1 1 1 0.0041 0.0041 0.0043 0.0041 0.0057 12 1 1 1 1 1 1 1 1 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0044 0.0044 0.0044 <th< th=""><th>6</th><th></th><th>0.0034</th><th>0.0034</th><th>0.0030</th><th>0.0036</th><th>0.0044</th><th>0.0048</th><th>0.0050</th><th>0.0053</th><th>0.0057</th><th>0.0060</th><th>0.0068</th><th>0.0078</th></th<>	6		0.0034	0.0034	0.0030	0.0036	0.0044	0.0048	0.0050	0.0053	0.0057	0.0060	0.0068	0.0078		
9 10 0.0034 0.0037 0.0039 0.0041 0.0044 0.0046 0.0052 0.0060 10 10 10 10 10 10 10 10 10 10 10 10 0.0037 0.0037 0.0039 0.0041 0.0043 0.0049 0.0057 11 1 1 1 1 1 1 0.0037 0.0037 0.0039 0.0041 0.0043 0.0049 0.0057 12 1 1 1 1 1 1 0.0037 0.0037 0.0037 0.0037 0.0039 0.0041 0.0044 0.0051 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0044 0.0044 0.0044 0.0044 0.0044	7				0.0027	0.0032	0.0040	0.0044	0.0046	0.0048	0.0051	0.0054	0.0061	0.0071		
10	8				0.0025	0.0030	0.0037	0.0040	0.0042	0.0044	0.0047	0.0050	0.0056	0.0065		
11 Image: Constraint of the constraint	9						0.0034	0.0037	0.0039	0.0041	0.0044	0.0046	0.0052	0.0060		
12	10								0.0037	0.0039	0.0041	0.0043	0.0049	0.0057		
13 0.0037 0.0042 0.0049 14 </th <th>11</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.0036</th> <th>0.0039</th> <th>0.0041</th> <th>0.0046</th> <th>0.0054</th>	11									0.0036	0.0039	0.0041	0.0046	0.0054		
14 0.0036 0.0040 0.0047 15 0 0 0 0.0045 0.0045	12										0.0037	0.0039	0.0044	0.0051		
15 0.0039 0.0045	13											0.0037	0.0042	0.0049		
	14											0.0036	0.0040	0.0047		
16 0.0043	15												0.0039	0.0045		
	16													0.0043		
T Ap 0.023 0.032 0.032 0.034 0.040 0.053 0.058 0.064 0.071 0.080 0.091 0.107 0.128	Т Ар	0.023	0.032	0.032	0.034	0.040	0.053	0.058	0.064	0.071	0.080	0.091	0.107	0.128		

NOTE: Always allow .003–.005" extra stock for full profile inserts.

Multi-Tooth Threads, Internal

			ISO r	netric					ISO UN			Whitworth		NPT	
type	ЗM	2M	3M	2M	3M	2M	2M	3M	2M	3M	2M	2M	2M	3M	2M
pitch (mm)	1.0	1.5	1.5	2.0	2.0	3.0	_	_	_	-	_	-	_	_	_
TPI	-	-	-	-	-	-	16	16	12	12	8	11	11.5	11.5	8
total depth	.024	.033	.033	.460	.460	.070	.037	.037	.490	.490	.740	.620	.690	.690	.100
1	.013	.015	.020	.020	.028	.022	.017	.022	.022	.030	.023	.029	.023	.032	.035
2	.011	.010	.013	.015	.018	.019	.012	.015	.016	.019	.020	.019	.020	.022	.025
3	-	.008	-	.011	-	.017	.008	-	.011	-	.017	.014	.014	.015	.022
4	-	-	-	-	-	.012	-	-	-	-	.014	-	.012	-	.018

Recommendations for Steel Workpieces (<300 BHN)


				total depth - on radius	
catalog number	insert size	TPI profile	1st pass	2nd pass	3rd pass
NTC-8R/L8EM	8	8 UN	.048	.064	.079
NTC-8R/L8IM	8	8 UN	.047	.061	.074
NTC-8R/L10EM	8	10 UN	.036	.050	.063
NTC-8R/L10IM	8	10 UN	.035	.048	.060
NTC-8R/L12EM	8	12 UN	.030	.041	.052
NTC-8R/L12IM	8	12 UN	.030	.037	.047
NTC-8R/L14EM	8	14 UN	.027	.037	.044
NTC-8R/L14IM	8	14 UN	.024	.031	.041
NTC-8R/L16EM 8	8	16 UN	.023	.032	.038
NTC-8R/L16IM	8	16 UN	.020	.027	.037
NTC-8R/L18EM	8	18 UN	.019	.026	.034
NTC-8R/L18IM	8	18 UN	.019	.024	.033
NDC-68RDR/L-75M	8	8 round	.058	.065	.073
NDC-61RDR/L-75M	8	10 round	.044	.051	.057
NDC-88RDRD/L-75M	8	8 round	.051	.069	.073
NDC-88VR/L-75M	8	8 NPT	.040	.068	.096
NDC-8115VR/L-75M	8	11.5 NPT	.038	.054	.067
NDN-814VR/L-75M	8	14 NPT	.038	.054	.054

NOTE: Always allow .003–.005" extra stock for full profile inserts.

Technical Information TopThread™

The following charts list the largest thread pitch that can be applied on internal applications using TopThread threading inserts for 60° V-threading and Acme threading.

Inch-Sized 60° V-Threading Limits internal threading limitations NT-1, NT-2 V-threading inserts

TPI		ninal d size	minimum minor diameter (inch)			
	NT-1	NT-2	NT-1	NT-2		
6	1-7/8	_	1.695	_		
7	1-3/4	-	1.595	-		
8	1-5/8	_	1.490	_		
9	1-9/16	-	1.442	-		
10	1-1/2	15/16	1.392	.830		
11	1-7/16	15/16	1.339	.830		
11-1/2	1-3/8	15/16	1.281	.830		
12	1-3/8	9/16	1.285	.472		
13	1-5/16	9/16	1.229	.472		
14	1-1/4	9/16	1.173	.472		
16	1-1/4	9/16	1.182	.472		
18	1-1/8	9/16	1.065	.472		
20	1-1/8	1/2	1.071	.440		
24*	1-1/16	1/2	1.017	.440		

*Twenty-four threads per inch and finer can be cut with an NT-2 insert provided the minor diameter is 1.000" or larger (.440" or larger with NT-1).

internal threading limitations NT-3 and- 4 V-threading inserts

TPI	nominal thread size	minimum minor diameter (inch)
4**	3	2.729
4-1/2**	2-7/8	2.634
5	2-3/4	2.534
6	2-1/2	2.320
7	2-1/4	2.095
8	2	1.865
9	1-15/16	1.817
10	1-7/8	1.767
11	1-13/16	1.714
11-1/12	1-3/4	1.656
12	1-3/4	1.660
13	1-5/8	1.542
14	1-9/16	1.485
16*	1-7/16	1.370

*Sixteen threads per inch and finer can be cut provided minor diameter is 1.370" or larger.

**NT-4 insert only.

Metric-sized 60° V-Threading Limits internal threading limitations NT-1, NT-2 60° V-threading inserts

TPI		ninal d size	minimum thread diameter (inch)					
	NT-1	NT-2	NT-1	NT-2				
4,00	M48 x 4.00	-	43,67	-				
3,00	M42 x 3.00	-	38,75	-				
2,50	M39 x 2.50	M24 x 2,50	36,29	21,29				
2,00	M33 x 2.00	M15 x 2,00	30,84	12,84				
1,75	M32 x 1.75	M15 x 1,75	30,11	13,11				
1,50	M32 x 1.50	M15 x 1,50	30,38	13,38				
1,25	M29 x 1.29	M14 x 1,25	27,65	12,65				
1,00*	M27 x 1.00	M14 x 1,00	25,92	12,92				
0,75	M22 x 0.75	M12 x 0,75	21,19	11,19				

*Thread pitch of 1mm and less can be cut with an NT-2 insert provided the core thread diameter is 25mm or larger (11mm or larger with NT-1).

internal threading limitations NT-3 and NT-4 60° V-threading inserts

TPI	nominal thread size	minimum thread diameter (inch)						
6,00**	M76 x 6.00	69,50						
5,50**	M73 x 5.50	67,05						
5,00	M70 x 5.00	64,59						
4,00	M64 x 4.00	59,67						
3,00	M52 x 3.00	48,75						
2,50	M48 x 2.50	45,29						
2,00	M42 x 2.00	39,84						
1,75	M40 x 1.75	38,11						
1,50*	M38 x 1.50	36,38						

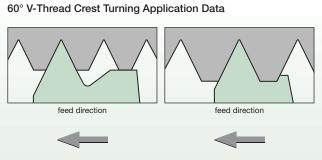
*Thread pitch of 1,5mm and less can be cut provided core thread diameter is 35mm or larger

**NT-4-insert only.

Acme Threading Limits internal threading limitations

NA and NAS-2, -3, -4, and -6 Acme threading inserts

TPI	nominal thread size	minimum thread diameter (inch)			
	NT-1	NT-1	NT-2		
2**	5	4.500	114.3		
2-1/2**	4-1/2	4.100	104.1		
3**	4	3.665	93.1		
4	3-1/2	3.250	82.6		
5	3	2.800	71.1		
6	2-1/2	2.333	59.3		
8	2-1/4	2.125	54.0		
10	2	1.900	48.3		
12	1-3/4	1.667	42.4		
14	1-5/8	1.554	39.5		
16*	1-1/2	1.438	36.5		


*Sixteen threads per inch and finer

can be cut provided minor diameter

is 1.438" (36,5mm) or larger. **NA-6 insert only.

Additional secondary clearance can be ground on leading edge of insert to provide sufficient helical clearance for machining coarser threads and multiple start threads. Modified standard inserts may be furnished for machining threads outside of the limits shown.

NTC crest turning insert for 12 threads per inch and finer (P \leq 2mm)

NTC crest turning insert for 11 threads per inch and coarser (P \ge 3mm)

NOTE: NTC inserts automatically control root to crest dimensions. Therefore, in setting up threading operations with NTC inserts, check the O.D. or I.D. at the thread crest for correct dimensions.

60° V-Thread Crest Turning Application Data

insert catalog number	nose radius on insert (inch)	thread radius per MIL-S-8879A (inch)
NJ-3014R/L12	.0125/.0135	.0125/.0150
NJK-3008R/L20	.0075/.0085	.0075/.0090

"J" thread note for catalog

The controlled root radius thread form (SAE8879C) is defined for the external thread only. To machine the corresponding internal thread, choose any insert that will cut a unified class 2B thread, then bore the minor diameter to size. Refer to SAE8879C and MIL-S-8879C and SAEAS8879D for the correct "J" thread minor diameter values.

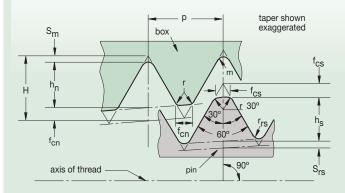
				recomme	nded TPI*	recomme	nded TP*
insert description	insert	D** (inch)	E** (inch)	external	internal	external	internal
"E"	NT-1	.075	.044	-	24–12	-	1,00–2,00
	NT-2	.113	.075	36–8	20–7	0,70–3,00	1,25–3,50
radius	NT-2-K	.113	.075	36–8	20–7	0,70–3,00	1,25–3,50
"D"	NTF-2	.062	.040	44–14	24–12	0,60–1,75	1,00–2,00
	NTK-2	.062	.040	44–14	24–12	0,60–1,75	1,00–2,00
NT- NTP-	NTP-2	.113	.075	36–8	20–7	0,70–3,00	1,25–3,50
	NT-3	.148	.097	20–6	12–5	1,25–4,00	2,00–5,00
feed direction	NT-3-K	.148	.097	20–6	12–5	1,25–4,00	2,00–5,00
	NT-3-C	.148	.097	11–6	6 (only)	2,50–4,00	4,00 (only)
	NT-3-CK	.148	.097	11–6	6 (only)	2,50–4,00	4,00 (only)
"E" →	NTF-3	.083	.054	44–10	24–9	0,60–2,50	1,00–2,50
	NTK-3	.083	.054	44–10	24–9	0,60–2,50	1,00–2,50
"D" radius	NTP-3	.148	.097	20–6	12–5	1,25–4,00	2,00–5,00
	NT-4	.196	.127	20–4	12–4	1,25–6,25	2,00–6,25
NTK-	NT-4-K	.196	.127	20–4	12–4	1,25–6,25	2,00–6,25
feed direction	NTP-4	.196	.127	20–4	12–4	1,25–6,25	2,00–6,25

*Based on maximum insert radius size and class 2A and 2B thread specifications. **For metric D and E dimensions, multiply by 25,4.

60° V-Thread Application Data

API Thread Forms • Insert Applications Chart for API Rotary Shouldered Connections

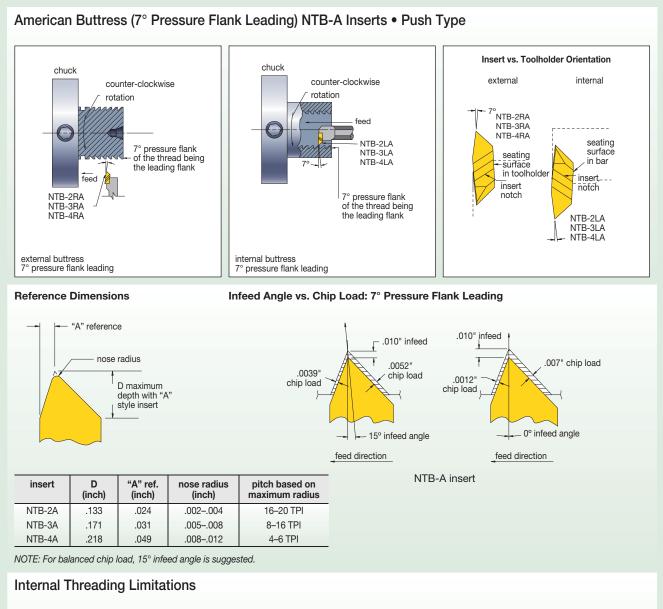
thread	WIDIA	' insert	tool joint	minimum	
form			application	box size*	
V038R 2" TPF 4 TPI	NDC-4038R/L2 4-E/IR4API382			API #31 2-7/8 IF	
V038R 3" TPF 4 TPI	NDC-4038R/L3 4-E/IR4API383	ND-3038R/L	API #56 API #61 API #70 API #77	API #56	
V050 2" TPF 4 TPI	NDC-4050R/L2 4-E/IRAPI502	ND-4050R/L	5-1/2 API full hole 6-5/8 API regular 6-5/8 API full hole	5-1/2 API full hole	
V050 3" TPF 4 TPI	NDC-4050R/L3 4-E/IR4API503	ND-4050R/L	5-1/2 API regular 7-5/8 API regular 8-5/8 API regular	5-1/2 API regular	
V040 3" TPF 5 TPI	NDC-3040R/L3 NDC-4040R/L3 4-E/IR5API403	ND-3040R/L ND-4040R/L	2-3/8 API regular 2-7/8 API regular 3-1/2 API regular 4-1/2 API regular	3-1/2 API regular	


*Minimum box size that can be threaded with a standard TopThread insert due to minimum bore equipment.

API Thread Forms Product Thread Dimensions • Rotary Shouldered Connections (Inch)

		thread	thread	root		width	of flat			
threadform	taper inch per ft.	height, not truncated H	height, truncated h _n =h _s	truncation S _m =S _{rs} f _m =f _{rs}	crest truncation f _{cn} =f _{cs}	crest f _{cn} =f _{cs}	crest f _m =f _{rs}	root radius ^r m ^{=r} rs	radius at thread corners r	pitch p
V038R	2	.216005	.121844	.038000	.056161	.065	_	.038	.015	.250
V038R V040 V050	3 3 3	.215379 .172303 .215379	.121381 .117842 .147303	.038000 .020000 .025000	.055998 .034461 .043076	.065 .040 .050		.038 .020 .025	.015 .015 .015	.250
V050	2	.216005	.147804	.025000	.043201	.050	-	.025	.015	.250

NOTE: All dimensions in inches.


V-.040 and V-.050 Product Thread Form

Casing and Tubing Round Thread (Height Dimensions)

threa	ad element	10 TPI p=.1000	8 TPI p=.1250
Н	= .866p	.08660	.10825
$H_s = h_n$	= .626p007	.05560	.07125
$S_{rs} = S_{m}$	= .120p + .002	.01400	.01700
$S_{CS} = S_{CN}$	= .120p + .005	.01700	.02000

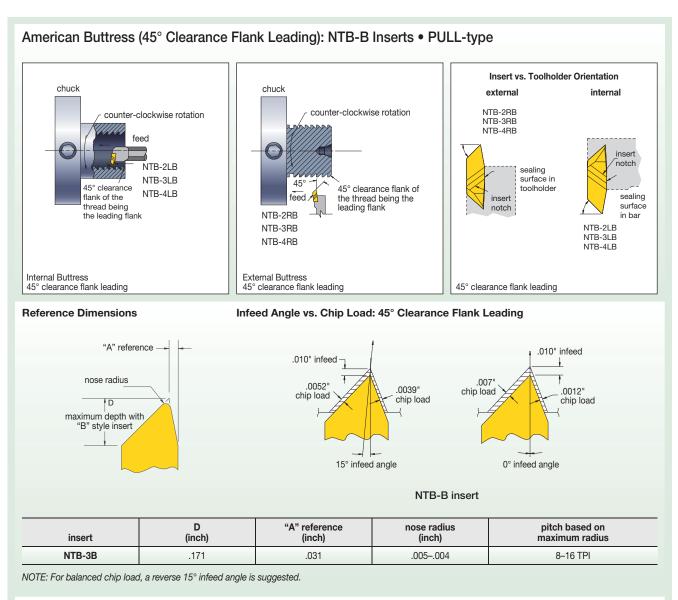
internal threading limitations NTB-2A Buttress threading inserts

internal threading limitations NTB-3 and NTB-4A Buttress threading inserts

ТРІ	nominal thread size	minimum minor diameter (inch)
8	1-3/4	1.600
10	1-5/8	1.505
12	1-1/2	1.400
16	1-1/4	1.175
20	1-1/16	1.002

TPI	nominal thread size	minimum minor diameter (inch)
4*	2-1/2	2.200
5	2-1/4	2.010
6	2	1.800
8	1-3/4	1.600
10	1-5/8	1.505
12**	1-1/2	1.400

*NTB-4A insert only.


**Can cut 16 or 20 threads per inch provided minor diameter is 1.375" or larger.

Threads per Inch vs. Maximum Root Radius Chart (Inch)

TPI	20	16	12	10	8	6	5	4	3	2-1/2	2	1-1/2	1-1/4	1
maximum root radius	.0036	.0045	.0059	.0071	.0089	.0119	.0143	.0179	.0238	.0268	.0375	.0476	.0572	.0714

NOTE: Special Buttress forms are available upon request.

Internal Threading Limitations

	internal threading limitations NTB-2B Buttress threading inserts			internal threading limitations NTB-3 and NTB-4B Buttress threading inserts			
TPI	nominal thread size	minimum minor diameter (inch)	TPI	nominal thread size	minimum minor diameter (inch)		
8	1-3/4	1.600	4*	2-7/8	2.575		
10	1-5/8	1.505	5	2-3/4	2.510		
12	1-1/2	1.400	6	2-3/8	2.175		
16	1-1/4	1.175	8	2-1/8	1.975		
20	1-1/16	1.002	10	1-7/8	1.755		
			12	1-5/8	1.525		
			16	1-1/2	1.407		

20 *NTB-4B insert only. 1-7/16

1.378

WIDIA[™] Knowledge Center

EXTREME **CHALLENGES.** EXTREME **RESULTS.**

Classes to Suit Everyone

Doing things the same way year after year can stall productivity. Continuing education and training in the latest machining practices are necessary to stay competitive.

The Knowledge Center offers several ways to get trained: industry- and application-specific courses, customer onsite programs, and online-based certified metalcutting professional courses. In-person classes include lecture, lab, and machining demonstrations.

Regional Training

The Regional Application Engineering Program is designed to provide a broad base of knowledge for the selection and use of metalcutting tools. Instruction includes lecture-style presentations and video demonstrations. Participants receive notes and text materials, and the video demonstrations reinforce the theories presented in the lecture.

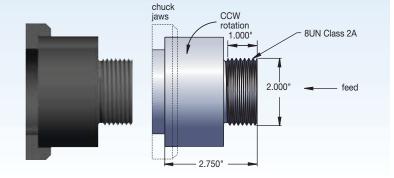
Metalcutting Application Training

The Comprehensive Metalworking Application Course provides a broad base of knowledge for the selection and use of metalcutting tools. Lecture-style presentations and laboratory demonstrations enhance course material through actual cutting tests and reinforce the theories presented in the lecture.

For more information, contact your local WIDIA Authorized Distributor or visit **widia.com/services**.

Technical Information

External Laydown Threading


Required Information

From Part Drawing:

material: 316SS, 200 HB thread form: 8UN tolerance: class 2A operation: external threading pitch diameter: 2.00" x 1.00" deep

From Machine Setup Data:

tooling: .750" x .750" spindle rotation: counter-clockwise feed: toward chuck

Steps for a Successful Threading Operation

Determine Threading Method

Need to Know:

Step 1 •

- · Operation (external).
- Spindle rotation (CCW).
- Counter-clockwise rotation.
- Feed direction (toward chuck).
- Right-hand toolholder.
- · Right-hand insert (ER).
- · Standard helix method.

Step 2 • Select Insert

Need to Know:

- Thread form (8 UN Class 2A).
- Hand of insert (right hand ER).

Choose the High-Performance Solution

catalog number	insert size	TN6025	
3ER8UN	3"	•	

High-Performance Selection

NOTE: Use insert with largest iC available.

insert: 3ER8UN TN6025 grade: speed: 500 SFM

Step 5 • Select Shim

Need to Know:

- Thread form TPI or pitch (8 TPI).
- Pitch diameter (2").
- · Helix method (standard). See Laydown Threading (LT) shim selection chart.

Select SM-YE3 shim

NOTE: The SM-YE3 shim is supplied with the selected toolholder.

Step 3 • Select the Grade and Speed

Need to Know:

- Workpiece material (316SS-200HB).
- · Operation (external).

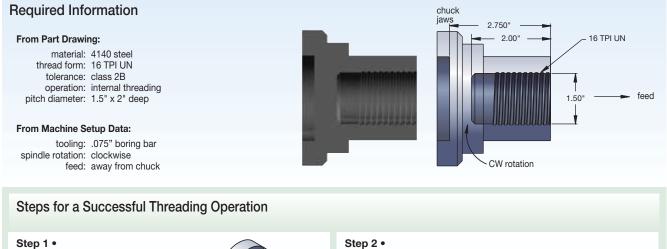
Options: Grade and Speed Selection Guidelines

threading operation	stainless steel
	general purpose and high performance
external	TN6025
	150-450 SFM

Step 4 • Select Toolholder

Need to Know:

- External or internal operation (external).
- Pitch diameter to determine minimum bore diameter (N/A).
- Type of tooling toolholder, boring bar (toolholder).
- Hand of tool (right hand).
- Insert size (3/8").


Options:

catalog number	insert size	shim	
LSASR-123	3"	SM-YE3	

First choice: LSASR-123 holder

Technical Information Internal Laydown Threading

Step 1 • **Determine Threading Method**

Need to Know:

- · Operation (internal).
- Spindle rotation (CW). Clockwise rotation.
- · Feed direction (away from chuck).
- · Left-hand toolholder.
- · Left-hand insert (NL).
- · Reverse helix method.

Select Insert

Need to Know:

• Thread form (16UN Class 2B).

Hand of insert (left hand - NL).

Choose the High-Performance Solution

catalog number	insert size	TN6025	
2ILA60	2"	•	
3ILA60	3"	•	

High-Performance Selection

NOTE: Use insert with largest possible iC to go into the bore.

Step 5 • Select Shim

Need to Know:

- Thread form TPI or pitch (16 TPI).
- Pitch diameter (1.5").
- Helix method (reverse). See Laydown Threading (LT) shim selection chart.

Select SM-YE3-2N shim

NOTE: For this application, the standard shim supplied should be replaced with the recommended shim. SM-YE3-2N.

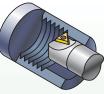
Step 3 • Select the Grade and Speed

Need to Know:

- Workpiece material (4010 steel).
- Operation (internal).

Options: Grade and Speed Selection Guidelines

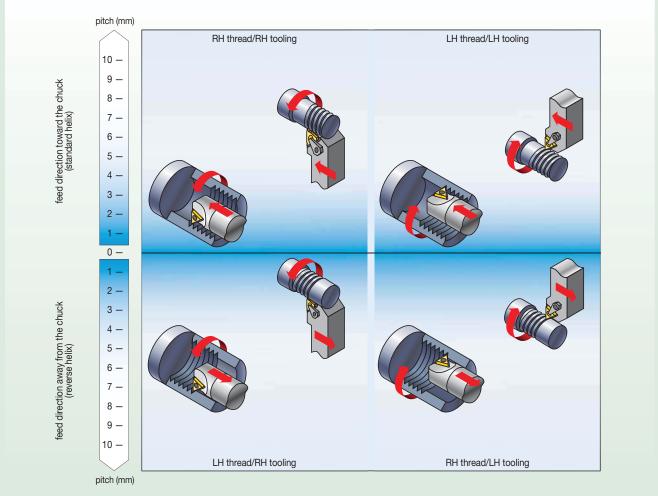
Step 4 • Select Toolholder


Need to Know:

- External or internal operation (internal).
- Pitch diameter to determine minimum bore diameter for internal operations (1.5").
- Type of tooling toolholder, boring bar (boring bar).
- · Hand of tool (left hand).
- Insert size (3/8").

Options:

First choice: S1212-LSEL3 bar



Laydown Threading Shim Selection Guidelines

It is essential to select the correct shim to ensure thread quality and maximum tool life. These parameters are needed:

- Pitch
- Pitch diameter
- Number of starts
- Feed direction

Laydown Selection Chart

NOTE: For multi-start threads, use the lead value instead of the pitch.


Diagram of Thread Lead Angles

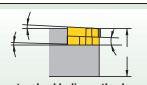
To calculate the lead angle of a given thread, use this formula:

 $\beta = \operatorname{Arctan} \quad \underbrace{ \begin{array}{c} P \bullet S \\ \pi D_{e} \end{array}}^{\beta = \text{ thread lead angle}} \begin{array}{c} De = effective pitch diameter of thread wear \\ P = 1/TPI \\ TPI = threads per inch \\ S = number of starts \\ single-start, lead = pitch \\ multiple-start, lead = pitch (x) number of starts \end{array}$

All toolholders are designed with an inclination angle = 1.5° . When turning standard threads with a lead angle of $1-2^{\circ}$, this guarantees adequate clearance at the flanks of the insert's thread tooth. The thread lead angle and the required inclination angle of the insert are given by β .

Cutting edge height is constant at every shim and insert combination. All toolholders are supplied with $1-1/2^{\circ}$ lead angle.

Laydown Threading Shim Selection Table • Inch


	toolh	loidei				shim orderin	g code (inch)			
insert size	external	internal				standard				
3 (3/8")	RH	LH	SM-YE3-3P	SM-YE3-2P	SM-YE3-1P	SM-YE3	SM-YE3-1N	SM-YE3-1.5N	SM-YE3-2N	SM-YE3-3
3 (3/8")	LH	RH	SM-YI3-3P	SM-YI3-2P	SM-YI3-1P	SM-YI3	SM-YI3-1N	SM-YI3-1.5N	SM-YI3-2N	SM-YI3-3
4 (1/2")	RH	LH	SM-YE4-3P	SM-YE4-2P	SM-YE4-1P	SM-YE4		SM-YE4-1.5N		SM-YE4-3
4 (1/2")	LH	RH	SM-YI4-3P	SM-YI4-2P	SM-YI4-1P	SM-YI4	SM-YI4-1N	SM-YI4-1.5N	SM-YI4-2N	SM-YI4-3I
TP		pitch (mm)	pitch diameter (inch)							
72		_								0.31-0.12
-		0,35				0.12-0.3	0.31-0.84	>0.84	0.84-0.31	0.3-0.12
		-	_	_	_	0.12-0.35	0.36-0.95	>0.95	0.95-0.36	0.35-0.14
64		0,40	_	_	_	0.14-0.35	0.36-0.96	>0.96	0.96-0.36	0.35-0.14
- 56		0,40	_			0.14-0.33	0.41-1.09	>1.09	1.09-0.41	0.4-0.16
-		0,40	_		0.11–0.16	0.17-0.44	0.41-1.09	>1.09	1.2-0.45	0.44-0.17
48		-			0.12-0.17	0.17-0.44	0.47–1.27	>1.20	1.27-0.47	0.44-0.17
40		_	_		0.12-0.17	0.18-0.40	0.52-1.38	>1.27	1.38–0.52	0.40-0.18
					0.13-0.19			>1.36		
- 40		0,60	-	0.1-0.12		0.21-0.53	0.54-1.44		1.44-0.54 1.52-0.57	0.53-0.21
40		-	_	0.11-0.13	0.14-0.21	0.22-0.56	0.57-1.52	>1.52		
		0,70	_	0.12-0.15	0.16-0.23	0.24-0.62	0.63-1.68	>1.68	1.68-0.63	0.62-0.24
36			-	0.12-0.15		0.24-0.62	0.63-1.69	>1.69	1.69-0.63	0.62-0.24
-		0,75	0.11-0.12	0.13-0.16	0.17-0.25	0.26-0.66	0.67-1.8	>1.80	1.8-0.67	0.66-0.26
32		-	0.12-0.13	0.14-0.17	0.18-0.26	0.27-0.7	0.71-1.9	>1.90	1.9-0.71	0.7-0.27
-		0,80	0.12-0.13	0.14-0.17	0.18-0.26	0.27-0.71	0.72-1.91	>1.91	1.91-0.72	0.71-0.27
28		-	0.14-0.14	0.15-0.19	0.2-0.3	0.31-0.8	0.81-2.17	>2.17	2.17-0.81	0.8-0.31
27		-	0.14-0.15	0.16-0.2	0.21-0.31	0.32-0.83	0.84-2.25	>2.25	2.25-0.84	0.83-0.32
-		1,00	0.15-0.16	0.17-0.21	0.22-0.33	0.34-0.89	0.9–2.39	>2.39	2.39-0.9	0.89-0.34
24		-	0.16-0.17	0.18-0.23	0.24-0.35	0.36-0.94	0.95-2.53	>2.53	2.53-0.95	0.94-0.36
-		1,25	0.19–0.2	0.21-0.27	0.28-0.42	0.43–1.11	1.12-2.99	>2.99	2.99-1.12	1.11-0.43
20		-	0.19–0.21	0.22-0.27	0.28-0.42	0.43–1.13	1.14-3.04	>3.04	3.04-1.14	1.13-0.43
18		-	0.21-0.23	0.24-0.31	0.32-0.47	0.48-1.26	1.277-3.38	>3.38	3.38-1.27	1.26-0.48
-		1,50	0.22-0.25	0.26–0.33	0.34–0.5	0.51–1.34	1.35–3.59	>3.59	3.59–1.35	1.34-0.51
16		-	0.24-0.26	0.27-0.35	0.36–0.53	0.54–1.41	1.42–3.8	>3.80	3.8–1.42	1.41-0.54
-		1,75	0.26-0.29	0.3–0.38	0.39–0.59	0.6–1.56	1.57–4.19	>4.19	4.19–1.57	1.56-0.6
14		-	0.27–0.3	0.31–0.4	0.41–0.61	0.62-1.62	1.63-4.34	>4.34	4.34-1.63	1.62-0.62
13	3	-	0.29-0.32	0.33–0.43	0.44-0.66	0.67–1.74	1.75-4.68	>4.68	4.68–1.75	1.74-0.67
-		2,00	0.3–0.33	0.34-0.44	0.45-0.67	0.68–1.78	1.79–4.79	>4.79	4.79–1.79	1.78-0.68
12	2	-	0.32-0.35	0.36–0.46	0.47-0.71	0.72–1.89	1.9–5.07	>5.07	5.07-1.9	1.89-0.72
11.	.5	-	0.33-0.37	0.38–0.49	0.5–0.74	0.75–1.97	1.98-5.29	>5.29	5.29-1.98	1.97-0.75
11	1	-	0.34–0.38	0.39–0.51	0.52-0.78	0.79–2.06	2.07-5.53	>5.53	5.53-2.07	2.06-0.79
-		2,50	0.37-0.42	0.43-0.55	0.56-0.84	0.85–2.23	2.24-5.98	>5.98	5.98-2.24	2.23-0.85
10)	-	0.38-0.42	0.43–0.56	0.57–0.86	0.87–2.27	2.28-6.08	>6.08	6.08-2.28	2.27-0.87
9		-	0.42-0.47	0.48-0.62	0.63–0.95	0.96-2.52	2.53-6.75	>6.75	6.75–2.53	2.52-0.96
-		3,00	0.45-0.5	0.51–0.66	0.67-1.02	1.03–2.68	2.69-7.18	>7.18	7.18–2.69	2.68-1.03
8		-	0.47-0.53	0.54–0.7	0.71-1.08	1.09–2.84	2.85-7.6	>7.60	7.6–2.85	2.84-1.09
-		3,50	0.52-0.59	0.6-0.77	0.78–1.19	1.2–3.13	3.14-8.38	>8.38	8.38–3.14	3.13–1.2
7		-	0.524-0.61	0.62–0.8	0.81-1.23	1.24–3.25	3.26-8.68	>8.68	8.68–3.26	3.25-1.24
-		4,00	0.6-0.67	0.68–0.89	0.9–1.36	1.37–3.58	3.59–9.57	>9.57	9.57-3.59	3.58–1.37
6		-	0.63-0.71	0.72-0.94	0.95-1.44	1.45–3.79	3.8–10.13	>10.13	10.13–3.8	3.79-1.45
-		5,00	0.75-0.84	0.85–1.11	1.12–1.7	1.71–4.48	4.49–11.97	>11.97	11.97-4.49	4.48-1.71
5		-	0.76-0.86	0.87–1.13	1.14–1.73	1.74-4.55	4.56-12.16	>12.16	12.16-4.56	4.55-1.74
4.5		_	0.84-0.95	0.96-1.26	1.27-1.92	1.93-5.06	5.07-13.51	>13.51	13.51-5.07	5.06-1.93
-		6,00	0.9-1.01	1.02-1.33	1.34-2.04	2.05-5.37	5.38-14.36	>14.36	14.36-5.38	5.37-2.05
		-	0.95-1.07	1.08–1.41	1.42-2.16	2.17–5.69	5.7–15.2	>15.20	15.2–5.7	5.69-2.17
4										
	clination ang	le	4.5	3.5	2.5	1.5	0.5	0.0	-0.5	-1.5

(feed toward the chuck)

1. Select TPI or pitch from the left-hand columns.

2. Follow row to specified pitch diameter and the correct feed direction.

3. Follow the column to the top for the required shim based on the toolholder and insert size.

1.5 std. reverse helix method:

standard helix method: Used when RH thread is cut with RH tool or LH thread with LH tool.

Used when RH thread is cut with LH tool or when LH thread is cut with RH tool.