

M A S TER C A T ALO G

HAIMER.

HAIMER.

LOCKNUTS FOR ER COLLET CHUCKS

Locknuts ER:

- Highest runout accuracy
- No wear and high clamping force due to special slide coating
- Small vibrations due to pre-balancing
- Version HS fine-balanced

LOCKNUTS FOR POWER COLLET CHUCKS

Power Collet locknuts:

- Highest runout accuracy
- No wear and high clamping force due to special slide coating
- Less vibrations due to pre-balancing

ER		ER 16	ER 25	ER 32
Order No.	$\mathbf{8 3 . 9 1 4 . . .}$	$\mathbf{1 6}$.25	.32
$\boldsymbol{\emptyset}$ D1		28	42	50
M	$M 23 \times 1.5$	$M 34 \times 1.5$	$M 42 \times 1.5$	
B	17.8	20	22.5	

SMOOTH LOCKNUTS FOR HIGH PRECISION COLLET CHUCKS

High Precision Smooth Locknuts ER:

- Highest runout accuracy
- No wear and high clamping force due to special slide coating
- Less vibrations due to pre-balancing
- Noise reducing

ER		ER $\mathbf{1 6}$	ER 25	ER 32
Order No.	$\mathbf{8 3 . 9 1 4 . . .}$.16 .1	.25 .1	. $\mathbf{3 2 . 1}$
Ø D1		28	42	50
Ø D2	27	40	48	
M	M 23×1.5	M 34×1.5	M 42×1.5	
B	17.8	20	22.5	

TORQUE MASTER TORQUE WRENCH FOR HAIMER POWER COLLET CHUCKS AND STANDARD ER CHUCKS

Two-armed clamping wrench and torque wrench for Collet Chucks:

- For highest runout accuracy, no one-sided clamping
- Optimal power transmission by consistent force application
- Torque wrench for highest clamping accuracy and repeatability
with dial gauge
- Maximum torque for highest clamping force
- No overloading of smaller clamping diameters
- Changeable inserts, useable also for standard ER Collets

Torque Master Torque Wrench	Order No.
Torque Master with case	$\mathbf{8 4 . 6 0 0 . 0 0}$
Torque Master without case	$\mathbf{8 4 . 6 0 0 . 0 0 . 5}$
Torque Master torque wrench set with case and 3 inserts for Standard ER Chucks in ER16, ER25, ER32	$\mathbf{8 4 . 6 0 0 . 0 0 . A K ~}$

INSERTS FOR TORQUE MASTER TORQUE WRENCH

Inserts for Torque Master Wrench		
for Power Collet Chucks	Size	
Order No.		
84.610 .16	ER 16	
84.610 .25	ER 25	
84.610 .32	ER 32	
for Standard ER Chucks	Size	Wrench size SW
84.620 .11	ER 11	SW 17
84.620 .16	ER 16	SW 25
84.620 .20	ER 20	SW 30
84.620 .25	ER 25	
84.620 .32	ER 32	
for Standard ER Chucks ER Mini	Size	Wrench size SW
84.620.16.1	ER 16 Mini	

WRENCHES

Power Collet clamping wrench for ER 16, ER 25 and ER 32				
ER		ER 16	ER 25	ER 32
Order No.	$84.650 \ldots$.16	.25	.32

Wrench for locknuts ER 11, ER 16 and ER 20

Wrench for locknuts ER 11, ER 16 and ER 20				
ER		ER 11	ER 16	ER 20
Wrench size		17	25	30
Order No.	$84.200 \ldots$.11	.16	.20

Wrench for locknuts ER 25-40

ER		ER 25	ER 32	ER 40	ER 50
Order No.	$\mathbf{8 4 . 2 0 0} \ldots$.25	.32	.40	.50

Wrench for tightening bolts for face mill arbors and combination shell end mill adapters \emptyset 16-60

ROLLER BEARING WRENCH FOR HIGH PRECISION COLLET CHUCKS

Roller bearing wrench for clamping of locknuts for High Precision Collet Chucks.

ER		ER 16	ER 25	ER 32
Order No. $84.650 \ldots$.16 .1	.25 .1	.32 .1	

HG Collets
For clamping tools with cylindrical shank with utmost precision in High-Precision Chucks.
For tools with shank tolerance h6.

Spindle wiper

For cleaning tool holder I.D. of High-Precision Chucks

HG		for HG 01	for HG 02	for HG 03
Order No.	$82.590 \ldots$.01	.02	03

For fine-balancing all tool holders with balancing threads M6 (e.g. shrink fit chucks from HAIMER).

The screws have different weights in a fine graduation.
They are screwed into the balancing threads of the tool holder so that their weight compensates the unbalance of the tool holder.

- Set consisting of screws in 11 different sizes and weights
- Screws are screwed to the bottom of the thread and tightened.

No additional fixing of screws necessary

- Balance quickly and precisely
- No damage to tool holders
- Can be repeated as often as necessary
- Suitable for tool holders of all brands
- The balancing machine calculates the necessary weight of the screws (e.g. HAIMER Tool Dynamic)
- Included in delivery: Case with 11×10 balancing screws, screw driver

Accessories	Order No.
Set of Balancing Screws	$\mathbf{8 0 . 2 0 3 . 0 0}$

HEAVY METAL BALANCING SCREWS

Heavy metal balancing screws (thread M6) for manual balancing of tool holders.

Length L [mm]		07	07	08	08	10	10
Size G [mm] Mass Order No.	85.502...	$\begin{aligned} & \text { M6x7 } \\ & \text { ca. } 2.3 \mathrm{~g} \\ & .7 .0 \end{aligned}$	M6x7 (5 pcs.) ca. 2.3 g .7.0.SET	$\begin{aligned} & \text { M6x8 } \\ & \text { ca. } 2.7 \mathrm{~g} \\ & .8 .0 \end{aligned}$	M6x8 (5 pcs.) ca. 2.7 g 8.0.SET	$\begin{aligned} & \text { M6x10 } \\ & \text { ca. } 3.5 \mathrm{~g} \\ & .10 .0 \end{aligned}$	M6x10 (5 pcs.) ca. 3.5 g .10.0.SET

BALANCING RINGS

For fine-balancing all tool holders with cylindrical outer diameter (diam. A).
The balancing index rings have a defined unbalance in themselves. They are turned in such a position that the unbalance of the tool holder will be compensated. There are always 2 rings needed per balancing plane.

- Balancing quickly and precisely
- No damage to tool holder
- Can be repeated as often as necessary
- Simply fixed by clamping screw
- Suitable for tool holders of all brands
- The balancing machine determines the position of the rings
- Included in delivery: 2 balancing index rings with screws (without hex wrench)
- Tightening torque: $1 \mathrm{ft} \mathrm{lb}(1.4 \mathrm{Nm})$

Order No.	Ø A [mm]	Ø A [inch]	unbalance ${ }^{1 /}$	rpm [1/min]
79.350 .15	15	0.59	$14 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .16	16	0.63	$14 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .17	17	0.67	$16 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .18	18	0.71	$17 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .19	19	0.75	$19 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .20	20	0.79	$21 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .22	22	0.87	$23 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .23	23	0.91	$25 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .24	24	0.94	$27 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .25	25	0.98	$28 \mathrm{~g} \cdot \mathrm{~mm}$	max. 55,000
79.350 .26	26	1.02	$32 \mathrm{~g} \cdot \mathrm{~mm}$	max. 50,000
79.350 .27	27	1.06	$32.5 \mathrm{~g} \cdot \mathrm{~mm}$	max. 50,000
79.350 .28	28	1.10	$34 \mathrm{~g} \cdot \mathrm{~mm}$	max. 50,000
79.350 .30	30	1.18	$37 \mathrm{~g} \cdot \mathrm{~mm}$	max. 45,000
79.350 .32	32	1.26	$43 \mathrm{~g} \cdot \mathrm{~mm}$	max. 45,000
79.350 .34	34	1.34	$46 \mathrm{~g} \cdot \mathrm{~mm}$	max. 40,000
79.350 .35	35	1.38	$48 \mathrm{~g} \cdot \mathrm{~mm}$	max. 40,000
79.350 .36	36	1.42	$51 \mathrm{~g} \cdot \mathrm{~mm}$	max. 40,000
79.350 .38	38	1.50	$56 \mathrm{~g} \cdot \mathrm{~mm}$	max. 35,000
79.350 .40	40	1.57	$60 \mathrm{~g} \cdot \mathrm{~mm}$	max. 35,000
79.350 .42	42	1.65	$65 \mathrm{~g} \cdot \mathrm{~mm}$	max. 35,000
79.350 .43	43	1.69	$69 \mathrm{~g} \cdot \mathrm{~mm}$	max. 35,000
79.350.1.71Z	43.45	1.71	$68 \mathrm{~g} \cdot \mathrm{~mm}$	max. 35,000
79.350 .44	44	1.73	$72 \mathrm{~g} \cdot \mathrm{~mm}$	max. 35,000
79.350 .46	46	1.81	$80 \mathrm{~g} \cdot \mathrm{~mm}$	max. 35,000
79.350 .48	48	1.89	$85 \mathrm{~g} \cdot \mathrm{~mm}$	max. 30,000
79.350 .50	50	1.97	$90 \mathrm{~g} \cdot \mathrm{~mm}$	max. 30,000
79.350 .52	52	2.05	$100 \mathrm{~g} \cdot \mathrm{~mm}$	max. 30,000
79.350 .53	53	2.09	$100 \mathrm{~g} \cdot \mathrm{~mm}$	max. 30,000
79.350 .54	54	2.13	$103 \mathrm{~g} \cdot \mathrm{~mm}$	max. 30,000

Order No.	Ø A [mm]	Ø A [inch]	unbalance ${ }^{\text {11 }}$	rpm [1/min]
79.350 .55	55	2.17	105 g .mm	max. 30,000
79.350 .56	56	2.20	$110 \mathrm{~g} . \mathrm{mm}$	max. 30,000
79.350 .58	58	2.28	$120 \mathrm{~g} . \mathrm{mm}$	max. 30,000
79.350 .60	60	2.36	$128 \mathrm{~g} \cdot \mathrm{~mm}$	max. 25,000
79.350 .62	62	2.44	$132 \mathrm{~g} \cdot \mathrm{~mm}$	max. 25,000
79.350 .63	63	2.48	$135 \mathrm{~g} . \mathrm{mm}$	max. 25,000
79.350 .64	64	2.52	$147 \mathrm{~g} . \mathrm{mm}$	max. 25,000
79.350 .65	65	2.56	$147 \mathrm{~g} . \mathrm{mm}$	max. 25,000
79.350 .66	66	2.60	$145 \mathrm{~g} . \mathrm{mm}$	max. 25,000
79.350 .68	68	2.68	161 g .mm	max. 25,000
79.350 .70	70	2.76	$165 \mathrm{~g} . \mathrm{mm}$	max. 25,000
79.350 .72	72	2.83	170 g .mm	max. 25,000
79.350 .74	74	2.91	$184 \mathrm{~g} . \mathrm{mm}$	max. 25,000
79.350 .76	76	2.99	$186 \mathrm{~g} . \mathrm{mm}$	max. 20,000
79.350 .78	78	3.07	206 g .mm	max. 20,000
79.350 .80	80	3.15	$215 \mathrm{~g} . \mathrm{mm}$	max. 20,000
79.350 .82	82	3.23	$213 \mathrm{~g} \cdot \mathrm{~mm}$	max. 20,000
79.350 .84	84	3.31	$229 \mathrm{~g} \cdot \mathrm{~mm}$	max. 20,000
79.350 .86	86	3.39	249 g .mm	max. 20,000
79.350 .87	87	3.43	256 g .mm	max. 20,000
79.350 .88	88	3.46	$251 \mathrm{~g} \cdot \mathrm{~mm}$	max. 20,000
79.350 .89	89	3.50	$260 \mathrm{~g} . \mathrm{mm}$	max. 20,000
79.350 .90	90	3.54	265 g .mm	max. 20,000
79.350 .92	92	3.62	275 g .mm	max. 20,000
79.350 .94	94	3.70	286 g .mm	max. 20,000
79.350 .96	96	3.78	$300 \mathrm{~g} \cdot \mathrm{~mm}$	max. 20,000
79.350 .98	98	3.86	$305 \mathrm{~g} . \mathrm{mm}$	max. 20,000
79.350 .100	100	3.94	320 g . mm	max. 15,000
79.350.125	125	4.92	$500 \mathrm{~g} . \mathrm{mm}$	max. 15,000

CAT40/CAT50
PULL STUD INFORMATION

HAIMER goes far beyond the requirements of CAT40 tooling. Our experience with tool holders and balancing have merged together to successfully create far superior CAT tapered tooling.

In addition to our contact and 100\% inspection process of our tapers, HAIMER has developed a special feature to greatly increase your tool holder balance repeatability and your machine tool spindle draw mechanism repeatability.

We have added a ground pilot in the rear of all our CAT40 tool holders. This ground pilot fits perfectly with the special HAIMER pull stud to maximize your tool holder to machine tool connection. The ground pilot is larger than the standard ANSI dimension, so you can easily use any pull stud from any manufacturer. However, for those serious about balance and machine tool spindle draw repeatability, HAIMER has the answer for you with our special pull stud/pilot connection!

PULL STUDS

 INCH

Pull studs are an important link between machine and tool.
The requirements concerning accuracy, rigidity and reliability are very high. Pull studs of poor quality not only decrease the performance of the machine, they are even a safety risk. A breaking pull stud might cause severe damage on the machine, work piece and even serious injuries.
Benefits of HAIMER pull studs:

- Made of special steel with high rigidity
- Costly heat treatment in several steps
- High impact strength
- All functional surfaces fine finished after hardening
- Highest security and reliability

Version with ground pilot is used to help consistently locate the pull stud in the tool holder. Great for runout accuracy, balance repeatability and machine tool draw bar consistency.
All HAIMER tool holders are provided with ground center-bore to match pull stud pilot (all standard pull studs can be used as well). All metric pull studs come with a ground pilot.

*Special

PULL STUDS INCH

3.

4.

5.

6.

7.

8.

1. MORI - SEIKI MAS 90° without coolant through									
Order No.	D1	D2	D3	L1	L2	L3	G1	α	pilot
CAT40									
88.111 .40	0.59"	0.39"	-	2.25"	1.27"	0.99"	5/8"-11UNC"	0°	-
88.121 .40	0.59"	0.39"	0.67"	2.25"	1.27"	0.99"	5/8"-11UNC"	0°	yes
88.131.40*	0.59"	0.39"	-	1.94"	0.96"	0.68"	5/8"-11UNC"	0°	-
CAT50									
88.111 .50	0.91"	0.67"	-	3.35"	1.78"	1.39"	1 "-8UNC"	0°	-
88.121 .50	0.91"	0.67"	1.06"	3.35"	1.78 "	1.39"	1 "-8UNC"	0°	yes

2. MORI - SEIKI MAS 90° with coolant through									
Order No.	D1	D2	D3	L1	L2	L3	G1	α	pilot
CAT50 88.113.50	0.91"	0.67"	-	3.35"	1.78"	1.39"	1"8UNC"	0°	-

3. JIS B 6339 without coolant through									
Order No.	D1	D2	D3	L1	L2	L3	G1	α	pilot
CAT4O 88.711 .40	0.75"	0.55"	-	2.01 "	1.03"	0.79"	5/8"11UNC"	15°	-
CAT50 88.710 .50	1.14	0.83"	-	2.93"	1.35 "	0.99"	1"-8UNC"	15°	-
88.720 .50	$1.1{ }^{\prime \prime}$	0.83"	1.06"	2.93"	$1.35 "$	0.99"	1"8UNC"	15°	yes

4. JJS B 6339 with coolant through									
Order No.	D1	D2	D3	L1	L2	L3	G1	α	pilot
CAT40 88.710 .40	0.75"	0.55"	-	2.01 "	1.03 "	0.79"	5/8"11UNC"	15°	-
88.720 .40	0.75"	0.55"	0.67"	2.01 "	1.03 "	0.79"	5/8"11 UNC"	15°	yes

5. ANSI B5.50 Mazak without coolant through									
Order No.	D1	D2	D3	L1	L2	L3	G1	α	pilot
CAT40									
88.511 .40	$0.74^{\prime \prime}$	$0.49^{\prime \prime}$	-	$1.62^{\prime \prime}$	$0.64^{\prime \prime}$	$0.44^{\prime \prime}$	$5 / 8^{\prime \prime}-1$ UNC"	45°	-

6. ANSI B5.50 Mazak with coolant through									
Order No.	D1	D2	D3	L1	L2	L3	G1	α	pilot
CAT40 88.510 .40	0.74"	0.49"	-	1.62"	0.64"	0.44"	5/8"11UNC"	45°	-
88.520.40	0.74"	0.49"	0.67"	1.62 "	0.64"	0.44 "	5/8-11UNC"	45°	yes

7. ANSI B5.50 Mazak without coolant through (Sealing with 0-Ring on face side)									
Order No.	D1	D2	D3	L1	L2	L3	G1	α	pilot
CAT50 88.51150	1.14"	0.82"	-	2.57"	1"	0.70"	1"8UNC"	45°	-

8. ANSI B5.50 Mazak with coolant through (Sealing with 0-Ring on face side)									
Order No.	D1	D2	D3	L1	L2	L3	G1	α	pilot
CAT50 88.510 .50	1.14"	0.82"	-	2.57 "	$1 "$	0.70"	1"-8UNC"	45°	-
88.520.50	$1.14{ }^{\prime \prime}$	0.82"	1.06"	$2.57{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	0.70"	1"-8UNC"	45°	yes

PULL STUDS METRIC

1. ISO 7388-3 Form (former norm MAS 4 [mm]					11	12	13		w°
BT30 Order No. 88.604.30	11	7	12.5	-	43	23	18	M12	30°
BT30 Order No. 88.601.30	11	7	12.5	-	43	23	18	M12	45°
BT40 Order No. 88.604.40	15	10	17	-	60	35	28	M16	30°
BT40 Order No. 88.601.40	15	10	17	-	60	35	28	M16	45°
BT50 Order No. 88.604.50	23	17	25	-	85	45	35	M24	
BT50 Order No. 88.601.50	23	17	25	-	85	45	35	M24	

2. ISO 7388-3 Form JD with coolant through (former norm MAS 403 [mm] $30^{\circ} / 45^{\circ}$)	d1	d2	d3	d4	I1	I2	I3	G1	\mathbf{w}°
BT30									
Order No. 88.605.30	11	7	12.5	2.5	43	23	18	M12	30°
BT30									
Order No. 88.600.30	11	7	12.5	2.5	43	23	18	M12	45°
BT40 Order No. 88.605.40	15	10	17	3.5	60	35	28	M16	30°
BT40 Order No. 88.603.40	15	10	17	3.5	60	35	28	M16	45°
BT50 Order No. 88.605.50	23	17	25	6	85	45	35	M24	30°
BT50 Order No. 88.603.50	23	17	25	6	85	45	35	M24	45°

3. MORI - SEIKI MAS 90° without coolant through									
[mm]	d1	d2	d3	d4	11	12	13	G1	\mathbf{w}°
BT40 Order No. 88.101.40	15	10	17	-	60	35	28	M16	0°
BT50 Order No. 88.101.50	23	17	25	-	85	45	35	M24	0°
4. JIS B 6339 with coolant through [mm]	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~d} 1 \end{aligned}$	d2	d3	d4	11	12	13	G1	w°
BT40 Order No. 88.700.40	19	14	17	7	54	29	23	M16	15°
BT50 Order No. 88.700.50	28	21	25	10	74	34	25	M24	15°

PULL STUDS METRIC
1.

4.

5.

6.

2. Special:

Similar ISO 7388-3 Form JD coolant through
[mm] with pilot
d1 d2 d3
BT40 shortened
Order No. 88.702.30
$0.470 .310 .49-1.690 .920 .79 \mathrm{M} 1215^{\circ}$

3. ISO 7388-2 Type A [mm]	d1	$\begin{aligned} & \text { ugh } \\ & \text { d2 } \end{aligned}$	d3	d4	11	12	13	G1	w°
SK40 Order No. 88.800.40	19	14	17	7	54	26	20	M16	15°
SK50 Order No. 88.800.50	28	21	25	11.5	74	34	25		15°

4. ANSI B5.50 Mazak with coolant through sealing on face side and pilot									
[mm]	d1	d2	d3	d4	11	12	13	G1	\mathbf{w}°
CAT40 Order No. 88.500.40	18.80	12.45	17	6	41.26	16.26	11.18	M16	45°
CAT40 with pilot Order No. 88.500.40.1	18.80	12.45	17	7	41.26	16.26	11.18	M16	45°
CAT50 Order No. 88.501.50N	28.96	20.83	25	10	65.4	25.4	17.78		45°

5. ANSI B5.50 Mazak with coolant through sealing on face side and pilot									
[mm]	d1	d2	d3	d4		12	13		w°
CAT40 extended Order No. 88.900.40.1	18.8	12.45		6.4	44.1	19.11	14.03	M16	

6. ANSI B5.50 Mazak with coolant through sealing on face side and pilot [mm] CAT50 CAT Order No. 88.500 .50

PULL STUDS METRIC

5.

6.

2. ISO 7388-3 Form AF (former norm DIN 698 [mm]		d2	d3	d4	[1	12	13		w°
SK 40 Order No. 88.202.40	19	14	17	-	54	26	20	M16	
SK 50 Order No. 88.202.50	28	21	25	-	74	34	25	M24	

2.1 Special: Similar ISO 7388-									
[mm]	d1	d2	d3	d4	11	12	13		w°
BT40 shortened Order No. 88.601.40.1	15	10	17	-	57.1	32.15	25.15		

4. Ott-groove with inn [mm]		d2	d3	d4	11	12	13	G1	G2	w°
SK50 Order No. 88.303.50	39.3	32	25	11.5	65		13.35	M24	M24	15°

5. ISO 7388-3 Form UD with coolant through (former norm ISO 7388-2 Form B)									
SK 40 Order No. 88.400.40	18.95	12.95	17	7	44.5	16.4	11.15	M16	
SK 50 Order No. 88.400.50	29.1	19.6	25	11.5	65.5	25.5	17.95	M24	

6. ISO 7388-3 Form UF sealed (former norm ISO 7388-2 Form B) [mm]	d1	d2	d3	d4	I1	I2	I3	G1	w $^{\circ}$
SK 40									
Order No. 88.402.40	18.95	12.95	17	-	44.5	16.4	11.15	M16	45°
SK 50 Order No. 88.402.50	29.1	19.6	25	-	65.5	25.55	17.95	M24	45°

SHRINK FIT BRUSHES

In order to achieve the best possible shrink fit connection, a grease free socket and shank is necessary. The cleaning can be done by a cold solvent (e.g. brake cleaner). An appropriate cleaning brush is necessary to clean the socket of the Shrink Fit Chuck.

Shrink Fit Brush Order No.	$\emptyset[$ [inch $]$	
$\mathbf{8 6 . 2 0 0 . 0 1}$	$1 / 8^{\prime \prime} \quad(3.175 \mathrm{~mm})$	
$\mathbf{8 6 . 2 0 0 . 0 2}$	$3 / 16^{\prime \prime}(4.762 \mathrm{~mm})$	
$\mathbf{8 6 . 2 0 0 . 0 3}$	$1 / 4^{\prime \prime} \quad(6.35 \mathrm{~mm})$	
$\mathbf{8 6 . 2 0 0 . 0 3}$	$5 / 16^{\prime \prime}(7.93 \mathrm{~mm})$	
$\mathbf{8 6 . 2 0 0 . 0 4}$	$3 / 8^{\prime \prime} \quad(9.525 \mathrm{~mm})$	
$\mathbf{8 6 . 2 0 0 . 0 4}$	$7 / 6^{\prime \prime}(11.11 \mathrm{~mm})$	
$\mathbf{8 6 . 2 0 0 . 0 5}$	$1 / 2^{\prime \prime} \quad(12.7 \mathrm{~mm})$	
$\mathbf{8 6 . 2 0 0 . 0 6}$	$5 / 8^{\prime \prime}$	$(15.87 \mathrm{~mm})$
$\mathbf{8 6 . 2 0 0 . 0 7}$	$3 / 4^{\prime \prime}$	$(19.05 \mathrm{~mm})$
$\mathbf{8 6 . 2 0 0 . 0 8}$	$1^{\prime \prime}$	$(25.4 \mathrm{~mm})$

Shrink Fit Brush Order No.	$\emptyset[\mathrm{mm}]$
$\mathbf{8 6 . 2 0 0 . 0 1}$	3
$\mathbf{8 6 . 2 0 0 . 0 2}$	3.5
$\mathbf{8 6 . 2 0 0 . 0 2}$	4
$\mathbf{8 6 . 2 0 0 . 0 2}$	4.5
$\mathbf{8 6 . 2 0 0 . 0 2}$	5
$\mathbf{8 6 . 2 0 0 . 0 3}$	6
$\mathbf{8 6 . 2 0 0 . 0 3}$	8
$\mathbf{8 6 . 2 0 0 . 0 4}$	10
$\mathbf{8 6 . 2 0 0 . 0 4}$	12
$\mathbf{8 6 . 2 0 0 . 0 6}$	14
$\mathbf{8 6 . 2 0 0 . 0 6}$	16
$\mathbf{8 6 . 2 0 0 . 0 7}$	18
$\mathbf{8 6 . 2 0 0 . 0 7}$	20
$\mathbf{8 6 . 2 0 0 . 0 8}$	25

COOLANT TUBES

- Dual o-ring design makes tube slightly movable
- Coated steel with smooth surface for trouble-free insertion into the machine spindle
- Fits all brands of HSK holders
- Must be used with all coolant through HSK spindles

Coolant tube with 20 -rings		HSK-A32	HSK-A40	HSK-A50	HSK-A63	HSK-A80	HSK-A100	HSK-A125
	HSK-E25	HSK-E32	HSK-E40	HSK-E50				
Order No. 85.700...	. 25	. 32	. 40	. 50	. 63	. 80	. 10	. 125
Length G [mm]	M8× 1	M10 $\times 1$	M12 $\times 1$	M16 $\times 1$	M18 $\times 1$	M20 $\times 1.5$	M24 $\times 1.5$	M30 $\times 1.5$
Length D [mm]	5	6	8	10	12	14	16	18
Length L [mm]	17	26	29,5	33	36,5	40	44	48

Accessories

Wrench		HSK 25	HSK 32	HSK 40	HSK 50	HSK 63	HSK 80	HSK 100	HSK 125	
Order No. $84.500 \ldots$.25	.32	.40	.50	.63	.80	.100	.125

REDUCTION SLEEVES

Use:
For clamping small shanks in chucks with $\varnothing 5 / 16$ " or 8 mm ID's.

For use in all chucks as reducers

- High-Precision chucks
- Collet chucks
- Hydraulic chucks
- Shrink fit chucks
- Other high precision mechanical chucks

INCH	Ø D	\varnothing D1	L	
Order No.	$79.110 .3 / 32 Z$	$3 / 32^{\prime \prime}$	$5 / 16^{\prime \prime}$	$0.27^{\prime \prime}$
Order No.	$79.110 .1 / 8 Z$	$1 / 8^{\prime \prime}$	$5 / 16^{\prime \prime}$	$0.35^{\prime \prime}$
Order No.	$79.110 .5 / 32 Z$	$5 / 32^{\prime \prime}$	$5 / 16^{\prime \prime}$	$0.47^{\prime \prime}$
Order No.	$79.110 .3 / 16 Z$	$3 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$	$0.56^{\prime \prime}$
Order No.	$79.110 .7 / 32 Z$	$7 / 32^{\prime \prime}$	$5 / 16^{\prime \prime}$	$0.65^{\prime \prime}$

METRIC		$\emptyset \mathrm{D}[\mathrm{mm}]$	$\varnothing \mathrm{D} 1[\mathrm{~mm}]$	$\mathrm{L}[\mathrm{mm}]$
Order No.	$\mathbf{7 9 . 1 1 0 . 2 . 5}$	2.5	8	7.5
Order No.	$\mathbf{7 9 . 1 1 0 . 0 3}$	3	8	9
Order No.	79.110 .3 .5	3.5	8	10.5
Order No.	$\mathbf{7 9 . 1 1 0 . 0 4}$	4	8	12
Order No.	79.110 .4 .5	4.5	8	13.5
Order No.	79.110 .05	5	8	15
Order No.	$\mathbf{7 9 . 1 1 0 . 5 . 5}$	5.5	8	16.5

REDUCTION SLEEVES FOR SHRINK FIT CHUCKS

Use:
For clamping small shanks in chucks with 12 mm ID's.
Shank tolerance h6.

First step: Insert reduction sleeve into bore of chuck by shrink process. Second step: clamp tool shank in reduction sleeve.

METRIC		Clamping Ø D [mm]
Order No.	$\mathbf{7 9 . 1 5 0 . 0 3}$	3
Order No.	$\mathbf{7 9 . 1 5 0 . 0 4}$	4
Order No.	$\mathbf{7 9 . 1 5 0 . 0 6}$	6

MINI SHRINK

SHRINK AND COOLING SLEEVES

For shrinking and cooling of Mini Shrink chucks.

- Protects Mini Shrink chucks from overheating
- Extends lifetime of shrink fit chucks
- Secure and user friendly handling
- Cooling with standard cooling body $6 \mathrm{~mm}-8 \mathrm{~mm}$

Shrinking and cooling sleeves for Mini Shrink chucks							Order No.	
Extra slim								
Size [mm]	$\emptyset 03$	$\emptyset 04$	$\emptyset 05$	$\emptyset 06$	$\emptyset 08$	$\varnothing 10$	$\emptyset 12$	
Size [inch]	Ø 1/8	-	Ø 3/16	Ø 1/4	$\emptyset 5 / 16$	ø 3/8	Ø 1/2	
Order No. 80.105.14...	. 2.01	. 2.02	. 2.03	. 2.04	. 2.05	. 2.06	. 2.07	
Standard								
Size [mm]	$\emptyset 03$	$\emptyset 04$	$\emptyset 05$	$\emptyset 06$	$\emptyset 08$	$\varnothing 10$	$\emptyset 12$	$\emptyset 16$
Size [inch]	Ø 1/8	-	Ø 3/16	$\emptyset 1 / 4$	Ø 5/16	ø 3/8	$\emptyset 1 / 2$	ø 5/8
Order No. 80.105.14...	. 2.04	. 2.08	. 2.05	. 2.09	.2.10	.2.11	. 2.12	. 2.16
Base							80.105.14.2.99	
Set with base (12 pcs., diameter 3-12 mm)							80.105.14.2.00	

BACK-UP SCREWS
FOR SHRINK FIT CHUCKS \& POWER COLLET CHUCKS

- Hexagon socket on each end - can always be reached
- Flats on sides for optimized coolant drainage
- Fine thread for maximum accuracy

For Shrink Fit Chucks

Clamping Ø		$\begin{aligned} & \text { CAT40/50 } \\ & \text { SK 40/50 } \\ & \text { BT 40/50 } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { HSK-A 32/E } 32 \\ \text { A 40/E } 40 \\ \hline \end{array}$	$\begin{aligned} & \text { HSK-A50/ } \\ & \text { E50 } \end{aligned}$	HSK-A63	HSK-F 63	HSK-A 80	HSK-A 100
$6 \mathrm{~mm} / 1 / 4^{\prime \prime}$	Length Order No. 85.810...	. 12.1	. 12.1	. 12.1	. 12.1	. 12.1	. 12.1	. 12.1
$8 \mathrm{~mm} / 5 / 16^{\prime \prime}$. 15.1	.15.1	.15.1	.15.1	. 15.1	. 15.1	. 15.1
$10 \mathrm{~mm} / 3 / 8^{\prime \prime}$	short	. 18.2	. 18.2	. 18.2	. 18.2	. 18.2	. 18.2	. 18.2
	other	. 18.2	. 36.2	. 36.2	. 36.2	. 36.2	. 36.2	. 36.2
$12 \mathrm{~mm} / 1 / 2^{\prime \prime}$	short	. 24.2	. 24.2	. 39.2	. 39.2	. 39.2	. 21.2	. 21.2
	other	. 24.2	. 24.2	. 24.2	. 24.2	. 24.2	. 24.2	. 24.2
$14 \mathrm{~mm} / 9 / 16{ }^{\prime \prime}$	short	. 24.2	. 24.2	. 39.2	. 39.2	-	. 21.2	. 21.2
	ZG130/oversize	. 24.2	. 24.2	. 24.2	. 24.2	-	. 24.2	. 24.2
$16 \mathrm{~mm} / 5 / 8{ }^{\prime \prime}$	short	. 46.2	. 27.2	. 25.2	. 25.2	.25.2 ${ }^{11}$. 27.2	. 40.1
	ZG130/oversize	. 46.2	. 27.2	. 38.2	. 46.2	.46.2 ${ }^{11}$. 46.2	. 46.2
18 mm	short	. 46.2	-	. 25.2	. 25.2	-	. 27.2	. 40.1
	ZG130/oversize	. 46.2	-	. 38.2	. 46.2	-	. 46.2	. 46.2
$20 \mathrm{~mm} / 3 / 4{ }^{\text {" }}$	short	. 52.2	-	. 51.2	.51.2	.51.2 ${ }^{1 /}$.51.2	. 51.2
	ZG130/oversize	.52.2	-	.52.2	.52.2	.52.2 ${ }^{1)}$. 52.2	. 52.2
$25 \mathrm{~mm} / 1^{\prime \prime}$	short	. 52.2	-	-	.52.2	.52.2 ${ }^{11}$.52.2	.52.2
	ZG130/oversize	. 52.2	-	-	. 52.2	.52.2 ${ }^{1)}$. 52.2	. 52.2
$32 \mathrm{~mm} / 1^{1 / 4}{ }^{\prime \prime}$	short	. 52.2	-	-	.52.2	-	.52.2	.52.2
	ZG130/oversize	.52.2	-	-	.52.2	-	.52.2	.52.2

For Shrink Fit Chucks \& Power Collet Chucks

Order No.	SW1	SW2	Thread	Also usable for Power Collet Chucks
85.810.12.1	SW2.5	SW2.5	M $5 \times 0.8 \times 16$	
85.810.15.1	SW3	SW3	M6x1x16	
85.810.18.2	SW3	SW4	M $8 \times 1 \times 16$	ER16
85.810.24.2	SW4	SW5	M10x1x20	
85.810.25.2	SW5	SW6	M12x1x18	ER25
85.810.27.2	SW4	SW6	M12x1x18	ER25
85.810.36.2	SW3	SW4	M8x1x20	ER16
85.810.46.2	SW6	SW6	M12x1x20	ER25

Order No.	SW1	SW2	Thread	Also usable for Power Collet Chucks
85.810.21.2	SW4	SW5	M10x1x16	
85.810.38.2	SW5	SW6	M12x1x22	ER25
85.810.39.2	SW4	SW5	M10x1x18	
85.810.40.1	SW6	SW6	M12x1x16	ER25
85.810.43.2	SW5	SW8	M12x1x18	ER25
85.810.44.2	SW5	SW8	M12x1x22	ER25
85.810.45.2	SW6	SW8	M12x1x18	ER25
85.810.51.2	SW5	SW8	M16x1x18	ER32
85.810.52.2	SW6	SW8	M16x1x22	ER32

BACK-UP SCREWS
FOR SHRINK FIT CHUCKS \& POWER COLLET CHUCKS

- Hexagon socket on each end - can always be reached
- Flats on sides for optimized coolant drainage
- Fine thread for maximum accuracy

For Shrink Fit Chucks

Clamping \varnothing		$\begin{array}{\|l} \text { CAT40/50 } \\ \text { SK 40/50 } \\ \text { BT 40/50 } \\ \hline \end{array}$	$\begin{aligned} & \text { HSK-A 32/E } 32 \\ & \text { A 40/E } 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HSK-A } 50 \\ & \text { E } 50 \end{aligned}$	HSK-A 63	HSK-F 63	HSK-A 80	HSK-A 100
$6 \mathrm{~mm} / 1^{1 / 4}$	Length Order No. 85.810...	. 12.4	. 12.4	. 12.4	. 12.4	. 12.4	. 12.4	. 12.4
$8 \mathrm{~mm} / 5 / 16^{\prime \prime}$. 15.4	. 15.4	. 15.4	. 15.4	. 15.4	. 15.4	. 15.4
$10 \mathrm{~mm} / 3 / 8{ }^{\prime \prime}$. 18.4	. 18.4	. 18.4	. 18.4	. 18.4	. 18.4	. 18.4
$12 \mathrm{~mm} / 1 / 2^{\prime \prime}$. 21.4	.21.4 ${ }^{11}$. 21.4	. 21.4	. 21.4	. 21.4	. 21.4
$14 \mathrm{~mm} / 9 / 16^{\prime \prime}$. 21.4	. 21.4	. 21.4	. 21.4	. 21.4	. 21.4	. 21.4
$16 \mathrm{~mm} / 5 / 8{ }^{\prime \prime}$	short ZG130/oversize	$\begin{aligned} & .37 .4 \\ & .37 .4 \end{aligned}$	$\begin{aligned} & .27 .4 \\ & .27 .4 \end{aligned}$	$\begin{aligned} & .25 .4 \\ & .25 .4 \end{aligned}$	$\begin{aligned} & .25 .4 \\ & .37 .4 \end{aligned}$	$\begin{aligned} & .25 .4^{1)} \\ & .37 .4^{1)} \end{aligned}$	$\begin{aligned} & \hline 27.4 \\ & .37 .4 \end{aligned}$	$\begin{aligned} & .40 .4 \\ & .37 .4 \end{aligned}$
18	short ZG130/oversize	$\begin{aligned} & .37 .4 \\ & .37 .4 \end{aligned}$	-	$\begin{aligned} & .25 .4 \\ & .25 .4 \end{aligned}$	$\begin{aligned} & .25 .4 \\ & .37 .4 \end{aligned}$	$\begin{aligned} & \hline .25 .4^{11} \\ & .37 .4^{1)} \end{aligned}$	$\begin{array}{r} .27 .4 \\ .37 .4 \\ \hline \end{array}$	$\begin{array}{r} .40 .4 \\ .37 .4 \\ \hline \end{array}$
$20 \mathrm{~mm} / 3 / 4{ }^{\prime \prime}$	short ZG130/oversize	$\begin{aligned} & .52 .4 \\ & .52 .4 \end{aligned}$	-	$\begin{aligned} & .52 .4 \\ & .52 .4 \end{aligned}$	$\begin{aligned} & .52 .4 \\ & .52 .4 \end{aligned}$	$\begin{aligned} & .52 .4^{1 \mid} \\ & .52 .4^{1 \mid} \end{aligned}$	$\begin{aligned} & \hline .52 .4 \\ & .52 .4 \end{aligned}$	$\begin{aligned} & .52 .4 \\ & .52 .4 \end{aligned}$
$25 \mathrm{~mm} / 1^{\prime \prime}$. 52.4	-	-	. 52.4	.52.4 ${ }^{1 /}$. 52.4	. 52.4
$32 \mathrm{~mm} / 1^{1 / 4}{ }^{\prime \prime}$. 52.4	-	-	. 52.4	.52.4 ${ }^{1)}$. 52.4	. 52.4

For Shrink Fit Chucks \& Power Collet Chucks

Order No.	SW1	SW2	Thread	Also usable for Power Collet Chucks
85.810.12.4	SW2.5	SW2.5	M $5 \times 0.8 \times 24$	
85.810.15.4	SW3	SW3	M6x1x24	
85.810.18.4	SW3	SW4	M8x1x24	ER16
85.810.21.4	SW4	SW5	M10x1x28	
85.810.37.4	SW6	SW8	M12x1x34	ER25
85.810.43.4	SW5	SW8	M12x1x34	ER25
85.810.25.4	SW5	SW6	M12x1x34	ER25
85.810.27.4	SW4	SW6	M12x1x34	ER25
85.810.52.4	SW6	SW8	M16x1x34	ER32

BACK-UP SCREWS FOR POWER SHRINK CHUCKS

- Optimized for Shrink Fit Chucks with Cool Jet
- Guaranteed coolant supply via transverse groove
- Hexagon socket on each end - can always be reached
- Flats on sides for optimized coolant drainage
- Fine thread for maximum accuracy

[mm]	Type	$\begin{aligned} & \text { CAT40/50 } \\ & \text { SK40/50 } \\ & \text { BT40/50 } \end{aligned}$	$\begin{array}{\|l} \text { HSK-A32/E32 } \\ \text { A40/E40 } \end{array}$	$\begin{aligned} & \text { HSK-A50/ } \\ & \text { E50 } \end{aligned}$	HSK-A63	HSK-F63	HSK-A80	HSK-A100
$6 \mathrm{~mm} / 1 / 4{ }^{\prime \prime}$	Length Order No. 85.810...	. 12.3	. 12.3	. 12.3	. 12.3	. 12.3	. 12.3	. 12.3
$8 \mathrm{~mm} / 5 / 16^{\prime \prime}$. 15.3	.15.3	.15.3	.15.3	. 15.3	.15.3	.15.3
$10 \mathrm{~mm} / 3 / 8^{\prime \prime}$. 18.3	.18.3	.18.3	.18.3	.18.3	.18.3	. 18.3
$12 \mathrm{~mm} / 1 / 2{ }^{\prime \prime}$	ultra short	$\begin{aligned} & \text { 48.3 } \\ & .48 .3 .1 \\ & \hline \end{aligned}$	$\text { . } 48.3$	$\text { . } 48.3$	$\text { . } 48.3$	48.3	48.3	48.3
$14 \mathrm{~mm} / 9 / 16^{\prime \prime}$. 21.3	. 21.3	. 21.3	. 21.3	-	. 21.3	. 21.3
$16 \mathrm{~mm} / 5 / 8{ }^{\prime \prime}$	ultra short	$\begin{aligned} & .49 .3 \\ & .49 .3 .1 \end{aligned}$.49.3	$\text { . } 49.3$.49.3	$\text { . } 49.3$. 49.3	$\text { . } 49.3$
18 mm		. 40.3	-	. 40.3	. 40.3	-	. 40.3	. 40.3
$20 \mathrm{~mm} / 3 / 4{ }^{\prime \prime}$. 51.3	-	. 51.3	. 51.3	. 51.3	. 51.3	. 51.3
$25 \mathrm{~mm} / 1^{\prime \prime}$. 52.3	-	-	. 52.3	-	.52.3	.52.3
$32 \mathrm{~mm} / 1^{11 / 4}$.52.3	-	-	.52.3	-	. 52.3	.52.3

Order No.	SW	Thread
85.810.12.3	SW2.5	M5x0.8x16
85.810.15.3	SW3	M6x1x16
85.810.18.3	SW4	M8x1x16
85.810.21.3	SW5	M10x1x16
85.810.40.3	SW6	M12x1×16
85.810.43.3	SW6	M12x1x18
85.810.46.3	SW6	M12x1×20
85.810.48.3	SW5	M10x1x16

Order No.	SW	Thread
$\mathbf{8 5 . 8 1 0 . 4 8 . 3 . 1}$	SW5	M10×1×28
$\mathbf{8 5 . 8 1 0 . 4 9 . 3}$	SW6	M12×1×16
$\mathbf{8 5 . 8 1 0 . 4 9 . 3 . 1}$	SW6	M12×1×20
$\mathbf{8 5 . 8 1 0 . 5 1 . 3}$	SW6	M16x1×18
$\mathbf{8 5 . 8 1 0 . 5 2 . 3}$	SW6	M16×1×20

Size $\varnothing[\mathrm{mm}]$	HSK-32, 40, 50, 63, 80, $\mathbf{1 0 0}$	SW	L [mm]	Thread	
ER 16	Order No.	$\mathbf{8 5 . 8 0 0 . 3 4}$	3	25	M6
ER 20		$\mathbf{8 5 . 8 0 0 . 3 4}$	3	25	M6
ER 25	$\mathbf{8 5 . 8 0 0 . 3 4}$	3	25	M6	
ER 32	$\mathbf{8 5 . 8 0 0 . 3 5}$	5	25	M10	
ER 40	$\mathbf{8 5 . 8 0 0 . 3 5}$	5	25	M10	

TENSION SPRINGS FOR SHRINK FIT CHUCKS

- Spring is set into clamping bore
- Spring presses tool against stop disk
- Fits all common shrink fit chucks
- Back-up screw can remain in chuck

Tension spring for length presetting

Tension springs										Order No.	
Size [mm]		$\emptyset 6$	$\varnothing 8$	$\varnothing 10$	$\emptyset 12$	$\emptyset 14$	$\varnothing 16$	$\emptyset 18$	$\varnothing 20$	$\emptyset 25$	Ø 32
Size [inch]		$\emptyset 1 / 4$	$\emptyset 5 / 16$	Ø 3/8	Ø 1 12	-	$\emptyset 5 / 8$	-	$\emptyset 3 / 4$	$\varnothing 1$	Ø111/4
Order No.	85.830...	. 06	. 08	. 10	. 12	. 14	. 16	. 18	. 20	. 25	. 32

Tension spring set (10 pcs. of each size) incl. pull-out gripper

Cone wiper CAT, BT, SK	CAT/BT/SK 30	CAT/BT/SK 40	CAT/BT/SK 50		
Order No.	$86.100 \ldots$.30		.40	.50
Cone wiper MK		MK 01	MK 02	MK 03	MK 04
Order No.	$86.100 \ldots$.01	.02	.03	.04

Cone wiper HG	HG 01	HG 02	HG 03	
Order No.	$82.590 \ldots$.01	.02	.03

For cleaning the inner cone of HG chucks

Tool Clamp - Tool-assembly device:

- Secure tool assembly with minimal physical effort
- Quick-change function for different taper interfaces without additional tools
- Accident-free assembly of cutting tools
- Elastic locking bolt

[^0]-Required space $140 \times 100 \mathrm{~mm}$

Tool Clamp

Tool holder SK

Tool Clamp - without tool holder, $4 \times 90^{\circ}$ indexable		
Order No.		84.700 .00
Tool holder CAT/BT/SK		
Order No.	Type	
84.701 .30	CAT/BT/SK 30	
84.701 .40	CAT/BT/SK 40	
84.701 .50	CAT/BT/SK 50	
Tool holder HSK-A		
Order No.	Type	
84.702 .40	HSK-A40	
84.702 .50	HSK-A50	
84.702 .63	HSK-A63	
84.702 .80	HSK-A80	
84.702 .10	HSK-A100	
Tool holder HSK-C/HSK-E		
Order No.	Type	
84.703 .25	HSK-C/E25	
84.703 .32	HSK-C/E32	
84.703 .40	HSK-C/E40	
84.703 .50	HSK-C/E50	
84.703 .63	HSK-C/E63	
84.703 .80	HSK-C/E80	
Tool holder HSK-F		
Order No.	Type	
84.704.63.M	HSK-F63 MAKINO	
84.704.80.M	HSK-F80 MAKINO	
Tool holder PSC		
Order No.	Type	
84.705 .32	PSC 32	
84.705 .40	PSC 40	
84.705 .50	PSC 50	
84.705 .60	PSC 63	
Tool holder KM4X100*		
Order No.	Type	
84.706.4X100	KM4X*	

[^1]

The mechanical RFID data carrier locking system locks the data carrier by a form and press fit into the tool holder.

Especially for higher rpm ranges the new system provides

 high process reliability.
Advantages:

- Process reliability even at high rotations thanks to mechanical locking
-Less integration depth than comparable mechanical locking systems
- Process reliability at the reading/writing process thanks to the reduced integration depth
-Fine balanced tool holder after data carrier assembly
- Immediately ready to use
- Possible also for non-HAIMER holders
-Patent pending

Delivery includes:

- Modification of the data carrier bore
- Sleeve for the data carrier
- Seal ring
- Mounting of data carrier
-Fine balancing

Mounting on HAIMER holders incl. fine balancing
Mounting on different holders incl. fine balancing

TECHNICAL DATA

TAPER AND HOLDER SPECIFICATIONS

Features and Benefits:

- Taper: Micron-exact manufacturing (AT3) extends the life of your spindle due to superior taper contact
- All tapers inspected during production to ensure maximum taper contact = maximum accuracy
- All tool holders easily balanceable
- Tapers Form ADF. Central coolant supply through the pull stud (Form AD, pull stud drilled through) and coolant channels through the flange (Form AF, pull stud sealed) which can be sealed again
- Minimal runout
- All holders marked with an identification number
- All holders come standard with pocket for data chip (Except BT, HSK-E and HSK-F tapers)
- Pre-balanced to G 2.5 at 25,000 RPMs
- Fine balancing optional
- Many tapers available
- 3 piece minimum order quantity on specials or discontinued items

[^0]: - Mechanical security pin
 -Better tool clamping, thanks to optimum ergonomics
 - Replaceable brass inserts protect the taper surface

[^1]: *KM4X is a registered trademark/tradename of Kennametal Inc.

